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Abstract. This white paper proposes ZetaChain, a blockchain with generic universal smart 
contract support that connects both smart contract blockchain such as Ethereum, Ethereum 
L2 rollups and EVM compatible chains (Polygon, Avalanche, BSC), Solana, SUI, and 
TON network, and even non smart contract blockchains such as Bitcoin and Dogecoin. 
ZetaChain consists of a Proof-of-Stake blockchain and observers and signers for external 
blockchains. The observers scan external chains for relevant events, transactions, and 
states at a point in time, and reach consensus on observation on ZetaChain’s blockchain. 
The signers collectively possess a single Threshold Signature Scheme (TSS) key that is 
able to send authenticated messages to external chains and hold assets like normal 
accounts/addresses on external chains. Smart contracts on ZetaChain support arbitrary 
logic that executes conditionally on external chain events, and can directly update external 
chain states via its TSS signed transactions. ZetaChain thereby enables universal dApps 
that interact with different blockchains natively and directly without wrapping or bridging 
any assets. 

1. Introduction 
It's hard to imagine a single blockchain would suffice for all our society's use cases. A multi-chain future 
seems inevitable. However, a multi-chain future without interoperability between the blockchains could 
be paralleled to the Internet before TCP/IP. Today's blockchains are too fragmented and are by-nature not 
interoperable, hindering mass adoption of the technologies. For example, a decentralized application 
(dApp) must be married to a specific blockchain. If a user onboards into the crypto ecosystem through a 
given dApp, this fragmentation makes immense barriers for the user to fluidly adopt or try a dApp on 
another chain. To address the issues of interoperability, there have been a few proposals and projects that 
specifically emphasize the ability to interoperate. However, the majority of interoperability systems only 
apply to specific blockchains, standardize their protocols within their own systems requiring other 
blockchains to adopt or through complicated, restricted, and/or less secure bridges to join (see Figure 1). 
In this whitepaper we propose a novel, public L1 blockchain that actively and agnostically connects 
blockchains and facilitates interoperability. Furthermore, we propose a generic smart contract on 
blockchain that can hold and manipulate assets on external blockchains directly, thereby enabling generic 



smart contracts that can custody assets on external chains. This opens the door to boundless cross-chain 
dApps. 

Blockchains are naturally closed systems. The goal of this whitepaper is to design and specify a practical 
system that is generic in its inter-blockchain capability, without forcing existing blockchains to adopt new 
standards or a new blockchain that every asset needs to move to, and do so in a decentralized, byzantine 
fault tolerant way. In other words, we aim to create a public blockchain that supports real cross blockchain 
transactions, message delivery, and general cross-chain smart contracts. According to our extensive 
survey, to satisfy this goal, the best pragmatic approach is the decentralized notary scheme on top of an 
incentivized Proof-of-Stake replicated state machine (aka blockchain) which we call ZetaChain. 

ZetaChain is first of all a public blockchain with Proof-of-Stake validators. It's trusted that a super 
majority (>66% nodes) of the validator nodes are honest and act according to protocol, and collectively 
serve as notaries. In addition to being a blockchain, interoperability requires observing other blockchains. 
Thus each ZetaChain validator node is attached with an observer that scans other blockchains for relevant 
events (event log, transaction, or state at a certain time). The observers report the relevant events to 
ZetaChain and reach consensus. ZetaChain uses custom logic to update its state in response to the 
reported events. On the other hand, in order to change state on other blockchains, each validator is also 
attached with a signer holding a key share. Collectively all the validators hold a single public/private key 
pair which can initiate transactions on other blockchains to change state directly. The signature scheme 
can be some kind of threshold signature scheme such as GG18/GG20 ECDSA/EdDSA, or BLS 
threshold/aggregate signatures, depending on the cryptography on different chains and their smart 
contract capability/cost. The presence of a single public key and address in the ZetaChain system allows 
ZetaChain to custody assets on external blockchains which might not have adequate smart contract 
capability such as Bitcoin. Such ability allows powerful cross-chain (or ‘universal’) dApps to be built on 
top of native ZetaChain cross-chain smart contracts. This capability looks much like on Ethereum where a 
smart contract can be trusted to manage assets according to predetermined rules, except on ZetaChain, a 
smart contract can leverage and manage assets on any connected blockchain. 

In summary, ZetaChain is designed to be a decentralized cross-blockchain smart contract platform. The 
vision of ZetaChain is to be a public computer on all important blockchains, on top of which 
cross-blockchain decentralized applications can be easily built as public, trustless, and persistent smart 
contracts. 

 



 

 

Figure 1. Before and After ZetaChain. Sub figure (a) on the left: Current ecosystem. Users and 
developers are siloed into respective chains, and current cross-chain solutions are disparate, resulting in 

major, growing fragmentation. Sub figure (b) on the right: Ecosystem with ZetaChain. Users, developers, 
and apps can operate across chains in a seamless manner. New paradigm of Universal dApps enabled. 

2. Background: Evolution of Blockchains 

2.1. Bitcoin: the original decentralized cryptocurrency 

Blockchain, pioneered by Bitcoin, is a decentralized and permissionless public ledger built on 
cryptography. The core mechanism is byzantine fault tolerant distributed consensus, which Bitcoin solved 
by a combination of techniques from cryptography, economic incentives, and computer science. Key 
innovations in Bitcoin include the use of elliptic curve digital signatures algorithm (ECDSA) for 
self-custody of funds, and the use of Proof-of-Work to reach distributed consensus (ordering of the ever 
growing log of transactions) and maintain resistance against sybil attacks. Bitcoin also introduces the first 
major application of blockchain technology—a p2p cryptocurrency. The Bitcoin network has been highly 
successful, even though it has not fulfilled its promise of being electronic cash. Rather, Bitcoin has 
become the most secure, decentralized, and stable store of value due to its technical simplicity and 
robustness, high degree of decentralization and low barrier of participation, and predictable and 
conservative monetary policy.  



The Bitcoin network consists of nodes connected by a p2p network. Participants include users and miners. 
The Bitcoin network collectively maintains a growing ledger that is a sequence of user transactions. A 
user transaction is a signed message that “spends” a certain amount of coins controlled by the user. The 
Bitcoin network does not explicitly maintain the balance state of each account; the only state of the 
network is the set of current UTXOs—unspent transaction outputs. A user’s balance of BTC is the sum of 
all UTXOs that can be spent by the user. A user transaction includes one or more UTXOs as inputs, and 
creates one or more UTXOs as outputs, thus changing the state (UTXO set). Bitcoin supports a limited 
form of scripting: a transaction can send coins to a script, and whoever can satisfy the script (i. e. supply 
data to make it evaluate to 1) may spend the coins. The scripting language is deliberately simple and 
Turing-incomplete —namely without branch and looping structures — but supports quite a few simple 
but fundamentally useful applications such as multi-sig, atomic swaps, etc. 

2.2. Ethereum: the programmable blockchain with smart contracts 

While Bitcoin is conceptually a simple ledger (ordered sequence of transactions) with basic scripting 
features that has served as the canonical example of a blockchain, it is not the limit of what a blockchain 
can do. For example, due to the limited scope of the verification function of the Bitcoin protocol, it’s not 
possible to issue new coins on the Bitcoin network. The Bitcoin network is not programmable in the sense 
that an arbitrary state transition function can be implemented. The only state transition function that 
Bitcoin supports is the hard-coded UTXO set change. In summary, no applications other than BTC 
currency can piggy-back on the Bitcoin network, inheriting its consensus, decentralization, and security. 
To extend the scope of blockchain to support Turing-complete programmability, Ethereum was born. 
Ethereum borrows the Proof-of-Work from Bitcoin for its consensus, and has made several important 
innovations that make it a public programmable blockchain. First, Ethereum defines a virtual machine 
(EVM) that provides a Turing-complete sandbox environment to specify arbitrary state transition 
functions (smart contracts). Second, Ethereum moves away from the UTXO model in Bitcoin to an 
account-based system where account store state. There are two kinds of accounts: External Owned 
Accounts (EOAs) which are controlled by a private key, and smart contract accounts which work 
autonomously according to their own logic. The availability of smart contracts on Ethereum makes it one 
of the most widely used dApp blockchains with thousands of applications deployed, such as financial 
derivatives, exchanges, NFTs, gambling, and games. Smart contracts on Ethereum are like objects in an 
object-oriented programming language where state can be stored and functions can be called to change its 
state. Users can interact with smart contracts by sending messages to it, and smart contracts can also send 
messages to other smart contracts (invoking) to change their state. The smart contracts can enable very 
complex applications, and can enable some very powerful operations such as flash loans or flash swaps 
that have no analogy in non-blockchain applications. This is made possible by the powerful atomicity of 
transaction that invokes smart contract functions: it either completes or completely reverts. Over the years 
more and more blockchains such as Polkadot, Solana, Avalanche, and Cosmos have arisen and support 
nearly Turing-complete smart contracts. 

2.3. Emergence and challenges of multi-chain 

While some people tend to favor one chain to rule them all, the reality is that blockchain technology and 
markets are evolving at an astonishing pace and it is becoming more and more apparent that the future of 
the ecosystem will be comprised of multiple blockchains serving their own purpose with their own 



tradeoffs in terms of security, decentralization, scalability, speed, cost, compliance, and so on. In this 
multi-chain future, a key limitation is that blockchains are designed to be a closed system. Transactions 
that happen on a blockchain can only rely on the state of their respective blockchain, and can only modify 
the state of their respective blockchain. External information cannot be reliably brought to the blockchain 
without a trusted third party (oracle). Transactions that involve multiple blockchains must go through a 
trusted party, such as a centralized exchange. As a result, there is currently no decentralized, 
permissionless, and public service that facilitates generic atomic transactions (not only atomic swapping, 
but also arbitrary logic) that involves multiple blockchains. 

Popular cross-chain or cross-blockchain strategies include side-chains, relays, notary schemes, hash 
time-lock contracts, and blockchains of blockchains. 

●​ First, side-chains/relays are popular solutions to implement bridges that primarily enable portable 
assets. In these, some assets have a home ledger that is authoritative on its ownership, but through 
bridges one can move the asset to other blockchains while being confident that the asset is able to 
move back to the home blockchain. Relay is one of the direct mechanisms to facilitate 
interoperability, where instead of relying on a trusted intermediary to provide information on 
chain A to chain B, chain B implements a thin client of chain A using smart contracts, and is able 
verify whether a particular event, transaction, or state at certain point in time has occurred on 
chain A. This is often called trustless because there is no additional trust assumption beyond 
trusting the two involved chains. In other words, no trust is required on the validity of the delivery 
mechanism of messages from chain A to chain B, other than that the message is delivered and 
delivered in time. Examples of relays include the BTCRelay on Ethereum (a SPV client of 
Bitcoin) and the Rainbow bridge of Ethereum on the NEAR blockchain. Relays are also popular 
mechanisms for side-chains. 

●​ Second, notary schemes are mechanisms where a trusted entity (or a set of) is tasked with 
notarizing claims such as “event X has happened on blockchain A”. The most obvious notary 
schemes are centralized exchanges, which are trusted entities to facilitate cross-blockchain 
exchanges of coins. Notary schemes do not have to be centralized; for example the Interledger 
project, in its “atomic mode” can be categorized as a decentralized, byzantine fault tolerant notary 
scheme to facilitate cross-ledger transfers. Note that notary schemes are the most flexible in terms 
of interoperability use cases, because they are able to act with arbitrary logic in response to events 
on discrete blockchains. Another notable decentralized notary scheme is THORChain which 
implements a DEX for native coins across several different chains, using a set of incentivized 
validators as notaries. 

●​ Third, hash time-lock contracts (HTLC) are constructs of smart contracts that can facilitate 
atomic swaps across blockchain chains trustlessly without additional trust beyond the 
participating two blockchains. The key words are “atomic” and “trustless”. Atomic means that the 
transactions (involving two parties) are either complete or revert (as if nothing has happened). 
Trustless means no third-party needs to be trusted for the atomic swap. It works roughly by two 
parties interactively deploying and interacting with smart contracts on both sides. The core idea is 
with a hash of secret that is conceived by party A and used by both parties, and party A is forced 
to reveal the secret when claiming party B's coin, which can then be used by party B to claim 
party A's coin. Examples of HTLC include XClaim BTC/Ethereum or BTC/Polkadot bridge, and 
the Lightning Network on Bitcoin. 



●​ Fourth, blockchains of blockchains (BoB) are frameworks that provide data, network, consensus, 
incentive, and contract layers for constructing application-specific blockchains that interoperate 
between each other. Note that BoB does not solve current interoperability problems directly. 
Rather it enables the creation of new interoperable blockchains. To connect to “legacy” chains, 
some sort of bridge or other mechanism shown above must be employed. Important examples of 
BoB are Polkadot and Cosmos, built on Substrate and Tendermint as consensus engines, and 
XCMP and IBC as cross-chain communication protocols. 

   

Strategy  Use scenarios  Trust Assumption  

   

Relay/Side-chain  Portable Assets  Trustless  

Notary Scheme  Arbitrary  Trustful  

HTLC  Atomic Swaps  Trustless  

BoB  New blockchains  Trustless/Trustful  

   

 

Table 1. Comparison of existing cross-chain strategies 

Each of these broad strategies has its strengths and weaknesses in technical complexity, trust assumptions, 
level of interoperability, and use cases. Our discussion here is brief and incomplete, but still we can very 
roughly categorize the characteristics of these strategies; see Table 1 for a comparison of these strategies. 

3. Interoperability Related Work 
In this section, we pick some of the recent and most relevant projects, ideas, and trends to provide context 
for this paper and ZetaChain. For more academic cross-blockchain research please refer to a 
comprehensive survey [1]. 

3.1. Cross-chain Communication 

A basic building block of any cross-blockchain interoperability is the ability to communicate and prove to 
chain B that a certain transaction happened on chain A. 

BTCRelay [4], Rainbow Bridge [5]: Consider the task of building a one-way bridge on Ethereum from 
Bitcoin. When a user on Bitcoin sends 1 BTC to a given custody address, one wrapped BTC is issued on 



Ethereum. To do this in a trustless way, a smart contract on Ethereum can verify the transaction on 
Bitcoin, and issue a corresponding wrapped BTC coin on Ethereum. BTCRelay is such an example. For 
an Ethereum smart contract to verify the transaction on Bitcoin, someone (off-chain service) can submit 
the transaction, together with the transaction Merkle proof. The Ethereum smart contract verifies the 
proof based on the chain of block headers stored in the smart contract. This smart contract is essentially a 
light client of Bitcoin. Even though the strength of the proof is a bit lower than a full node (would be 
vulnerable to certain 51% attacks), this kind of bridge is strong and trustless, albeit rather expensive to 
operate because the chain of the block headers have to be constantly updated in the smart contract. The 
Rainbow Bridge is also a good example of a trustless bridge, between Ethereum and NEAR. 

Wormhole [17]: Wormhole is also a cross-chain message delivery service, but it's not trustless. Rather, it 
depends on a set of validator nodes to attest the validity of the message delivered. Consider the same task 
of building a one-way bridge on Ethereum from Solana. When a user sends 1 SOL to a certain custody 
address, one wrapped SOL is issued on Ethereum. The Ethereum smart contract does not verify the 
transaction on Solana in order to issue the wrapped coin; it trusts that the super majority of the set of 
Wormhole validators are honest and correct. The security of Wormhole relies on the super-majority of the 
validators being honest. It appears that Wormhole relies on reputations of validators to build trust. 

LayerZero [13]: LayerZero is a communication layer for facilitating cross-chain message delivery. It's 
essentially a weaker form of Relay (see introduction about Relay). The idea is to enable Chain B to verify 
that a given transaction or event has happened on Chain A. If Chain B supports general smart contracts, a 
light client of chain A can be implemented in a smart contract so as to verify information about Chain A 
in a trustless manner. However, even a light client can be expensive to run in a smart contract, both in 
terms of computation and storage; for example the BTCRelay on Ethereum appears to be discontinued. 
LayerZero reduces these costs with an ultra-light client on smart contract which does not report and store 
the whole chain of block headers (or a significant part of it). Rather, LayerZero relies on trusting a block 
header without a chain of block headers that can trace back to some known trusted block. The key 
assumption of the security of LayerZero is that the two parties—Relayer, who provides proof of 
transaction, and Oracle, who provides the block header—are non-colluding. In our terminology and 
categorization, LayerZero is not “trustless” due to the trust needed for the independence of the two 
parties. We use a stricter definition of trustless as where the validity (not necessarily liveness, censorship 
resistance) of messages does not depend on trust in anything other than the two participating blockchains. 
If the relayer and oracle collude, they can defraud LayerZero by making up an invalid block header (costs 
about 2 Ether to compute PoW nonce which is the coinbase reward of each block), and make chain B 
believe that a non-existent transaction has happened on chain A. LayerZero essentially outsources its 
security to third-party relayer and oracle. 

Axelar [19]: Similar to LayerZero, Axelar provides a message passing protocol for building cross-chain 
smart contract apps. Axelar connects to 81 chains including heterogeneous smart contract platforms 
including Solana (SVM), Osmosis (Cosmos IBC), although it cannot connect to non smart contract chains 
directly such as Bitcoin and Dogecoin. The cross-chain message passing appears to be decentralized; 
there are a set of validators or observers that observe certain smart contracts on connected chains and 
forward its message to another smart contract on possibly another chain, by initiating a smart contract call 
there with the message included. Axelar also has its own L1 blockchain but it seems the programmability 
of the blockchain (its WASM smart contract platform) is not needed for cross-chain message passing.  



IBC [10]: Inter-Blockchain Communication (IBC) protocol is a TCP/IP-like protocol for communication 
between sovereign blockchains. IBC is an end-to-end, connection oriented, stateful protocol between 
blockchains. Practically, IBC usually requires fast finality chains such as CometBFT, and the blockchain 
must support IBC protocol such as Cosmos SDK-built chains. For the blockchains that support IBC, they 
can establish connections, and through these connections one blockchain can verify proofs against the 
consensus states of another blockchain. Each blockchain that supports IBC must run a light client that is 
capable of verifying proofs on the other blockchain in order for them to be connected. The IBC module 
must also handle production of proofs, and a separate process (relayer) must relay the packet and proof to 
the counterparty chain. Among the blockchains that support IBC, very strong interoperability can be 
established, such as coin transfer, atomic swaps, cross-chain decentralized exchanges, and even 
cross-chain smart contracts. The major drawback of IBC is that it requires adoption–which is a lot to ask 
of other blockchains, and also might not be possible for legacy blockchains. 

Intent [20] based cross-chain solutions: e.g., Across Protocol. Intents are a relatively new mechanism for 
conducting cross-chain transactions with hybrid on-chain and off-chain components. Users interact with 
contracts that conform to the Intent EIP [20] and “fulfillers”, i.e., third parties compete to fulfill the order 
for a fee. The cross-chain orders can be bridging some token to another blockchain, or they could be a 
swap order that results in a different token on a different chain. Note that the Intents themselves do not 
specify a particular way to complete the cross-chain transaction (bridging or swap), rather it specifies a 
unified and unambiguous way for contracts and users to signal the “intent” to trade and leave the 
fulfillment of the trade up to mostly private market makers. Intents are descriptive protocols for a subset 
of cross-chain transactions.  

3.2. Cross-blockchain Asset Transfer 

Hop [9]: Hop is a protocol to send coins across rollups and their underlying L1 in a trustless manner. 
Rollups are by default siloed systems and the asset transfer between rollups and L1 can be slow and 
expensive. For example, optimistic rollups usually take a week to exit into L1; on the other hand, 
zk-rollups can instantly validate exit but it involves high computation which is expensive on L1. Hop 
solves the problem of moving coins across rollups by creating bridges and bridge coins, and uses AMM 
markets to exchange coins rather than sending coins directly. Specifically, Hop creates bridge coins for 
each rollup, and the bridge coins can be moved around in batches so as to decrease the cost. The bridge 
coin acts as an intermediary asset in transferring a coin on rollup A to rollup B. Hop uses the existing 
rollup bridges to do cross-rollup transactions so it does not need a separate off-chain service. 

Connext [3]: Connext is a trust-minimized solution for cross-chain asset swaps. The idea is somewhat like 
generalized atomic-swaps, using Hash Time Locked Contracts (HTLC) to ensure transaction atomicity. It 
uses a network of off-chain routers to create a market and AMM style pricing mechanism. The safety of 
user funds do not depend on third-parties, only the liveness of the system does. Compared to Hop, 
Connext uses off-chain services and therefore can connect beyond rollups on a single L1; compared to 
externally verified solutions, Connext is application specific and not general purpose. For example, it 
cannot be adapted to send arbitrary messages or cross chain contract calls. 

THORChain [15], Chainflip [16]: THORChain (along with similarly built competitors like Chainflip) is a 
decentralized liquidity network that facilitates AMM style native L1 coins on different blockchains, 



including Bitcoin, Litecoin, Bitcoin Cash, Ethereum. Notably, THORChain is not, strictly speaking, a 
bridge, as it does not lock & wrap coins and transact on wrapped coins. Rather, THORChain is an 
application-specific blockchain that maintains the pool, logic, and management of vaults on different 
chains for swapping. THORChain distributes the signing key using the GG20 TSS scheme and has its 
own implementation based on Binance's TSS library. ZetaChain is in-part inspired by the design of 
THORChain, and can be thought of as a simpler and more generalized platform which enables not only 
swapping, but a generic smart contract platform that allows arbitrary cross-chain applications to be built 
easily. For example, developers can implement similar functionality to THORChain as a smart contract on 
ZetaChain. 

Synapse [14]: According to public information, Synapse is supposed to be an externally verified validator 
set based system for cross-chain swaps. It issues AMM smart contracts on external chains, and some 
composite stablecoin as an intermediary asset to cross-chain. To move the intermediary stablecoins across 
chains it appears to use a burn and mint strategy. Detailed public information about their validator 
mechanism is not available at the time of writing this paper. 

CCTP by Circle (https://developers.circle.com/cctp): The Cross-Chain Transfer Protocol (CCTP) v1/v2 
by circle (the issuer of USDC stablecoin) is a cross-chain asset transfer protocol, with message passing 
authenticated and facilitated centrally by Circle service provider. It’s similar to LayerZero, Wormwhole, 
or Axelar with USDC attached to every cross-chain messaging. The difference is that CCTP is not 
decentralized; only that its interfaces on multi-blockchains are contract calls.  

3.3. Cross-blockchain Smart Contract 

Quant Network [18]: Functionality-wise, the Quant network and its Overledger [18] is the closest to 
ZetaChain. The Quant network is a centralized service that provides a standardized web-service-based 
access to the connected public or private blockchains, or regional legacy database ledgers. It supports 
general programmability triggered by events on those blockchains (transaction to/from a given address, 
smart contract interaction, events, state changes, etc.), via popular languages and frameworks such as 
Javascript, Java, Python, etc. ZetaChain aims to achieve similar general programmability, but with an 
incentivized public blockchain, with far reduced trust assumptions, more transparency, complete 
verifiability and auditability. 

ICP/Chain-Key [2]: The Internet Computer Protocol (ICP) has proposals to enable interoperability to the 
Bitcoin network via its Chain-Key technology, which is similar to the distributed threshold signature 
scheme. With Chain Key, ICP in principle can custody funds on the Bitcoin network. It's unclear how ICP 
observes the Bitcoin network, and how their smart contract platform interacts with external blockchains. 

HyperService [11]: HyperService proposes a cross-chain smart contract platform that is chain agnostic. It 
consists of two components: a high level language HSL to describe a cross-chain dApp, and an execution 
layer that ensures financially atomic transactions. 

3.4. Blockchain of Blockchains (BoB) 

https://developers.circle.com/cctp


The most prominent BoBs are Cosmos and Polkadot. BoBs are usually frameworks that aim at tight 
interoperable application-specific blockchains. Polkadot, for example, provides a relay chain which 
handles all consensus, and Parachains which can be different blockchains with different state-transition 
functions. The Parachains are tightly integrated and can interoperate seamlessly via the relay-chain. 

The Cosmos ecosystem, on the other hand, does not share consensus, so the interoperability between 
Cosmos chains is less tight. Every Cosmos chain is sovereign with their own choice of consensus 
(typically CometBFT-based fast finality). The Cosmos ecosystem relies on the IBC protocol (see section 
3.1), and special blockchains called Hubs to facilitate cross-chain asset transfers, and even cross-chain 
smart contracts. 

To enjoy interoperability in Cosmos or Polkadot, the blockchains typically need to be built on some 
common ground. Legacy blockchains, or new blockchains with their own consensus, cannot be part of 
BoBs. 

4. ZetaChain Blockchain Architecture 

4.1. Overview 

At a high level, ZetaChain is a Proof of Stake (PoS) blockchain built on the Cosmos SDK and CometBFT 
Tendermint PBFT consensus engine. As a result, ZetaChain enjoys fast block time (~4s) and instant 
finality (no block confirmation needed, no re-organization allowed). The CometBFT Tendermint 
consensus engine has been demonstrated to scale to ~300 nodes in production, and with future upgrades 
with BLS threshold signatures the number can potentially increase to 1000+. The throughput of 
transactions of the CometBFT Tendermint consensus engine that ZetaChain uses can reach 4000+ 
transactions per second (TPS) under ideal network conditions [10]. Note that the cross-chain TPS cannot 
reach nearly as high because cross-chain transactions latency/throughput may be limited by external chain 
latency/throughput, TSS key-sign throughput, and various other factors such as external node RPC speed, 
etc.  

The ZetaChain architecture consists of a distributed network of nodes, often referred to as validators. 
Validators act as decentralized observers that can reach consensus on relevant external state and events, 
and can also update external chain state via distributed key signing. ZetaChain accomplishes these 
functions in a decentralized (without a single point of failure, trustless, permissionless), transparent, and 
efficient way. Contained within each validator is the ZetaCore and ZetaClient. ZetaCore is responsible for 
producing the blockchain and maintaining the replicated state machine. ZetaClient is responsible for 
observing events on external chains and signing outbound transactions. ZetaCore and ZetaClient are 
bundled together and run by node operators. Anyone can become a node operator to participate in 
validation provided that enough bonds are staked. See Figure 2 for a high level illustration.  

Validators: ZetaChain uses the CometBFT Tendermint consensus protocol which is a partially 
synchronous Byzantine Fault Tolerant (BFT) consensus algorithm. Each validator node can vote on block 
proposals with voting power proportional to the staking coins (ZETA) bonded. Each validator is identified 
by its consensus public key. Validators need to be online all the time, ready to participate in the constantly 



growing block production. In exchange for their service, validators will receive block rewards, and 
potentially other rewards such as gas fees or processing fees, proportional to their bonded staking coins. 

Observers: Another set of important participants of ZetaChain consensus are the observers who reach 
consensus on external chain events and states. The observers watch externally connected chains for 
certain relevant transactions/events/states at particular addresses via their full nodes of external chains. 
The observers can be further divided into two roles: sequencer and verifier. The sequencer discovers 
relevant external transactions/events/states and reports to verifiers; the verifiers verify and vote on 
ZetaChain to reach consensus. The system requires at least one sequencer and multiple verifiers. The 
sequencer does not need to be trusted, but at least one honest sequencer is needed for liveness. 

Signers: The ZetaChain collectively holds standard ECDSA/EdDSA keys for authenticated interaction 
with external chains. The keys are distributed among multiple signers in such a way that only a super 
majority of them can sign on behalf of the ZetaChain. It’s important to ensure that at no time is any single 
entity or small fraction of nodes able to sign messages on behalf of ZetaChain on external chains. The 
ZetaChain system uses bonded stakes and positive/negative incentives to ensure economic safety. 

In practice, all above roles (except sequencer) are collocated in the same computer node, sharing software 
and credentials such as validator keys and bonded stakes and the associated rewards/slashing. ZetaChain 
is planned to transition from Proof-of-Authority at first to a fully delegated Proof-of-Stake (DPoS) model 
over time, and gradually delegate the governance of the blockchain to ZETA coin holders via on-chain 
voting. 

 

 



Figure 2. ZetaChain High Level Architecture. 

4.2. Observers 

Observers are tasked with monitoring external chains for relevant transactions. Observers are continually 
scanning for external chain events responsible for both burning and minting the native coin (ZETA), 
messages & smart contract calls, as well as other events that dApps register on ZetaChain. Each observer 
independently observes using its own full node of external chains, and all the observations must reach 
consensus on the ZetaChain before being considered finalized. Once events are finalized, it automatically 
triggers an execution of ZetaChain logic, which can be defined as a custom Cosmos SDK module, or 
ZetaChain native smart contract. 

There are two modes of observation: Active and Passive mode. Active observation constantly scans the 
external blockchains for relevant transactions/events/states. Passive mode relies on a sequencer (or a 
small set thereof) to scan and report transactions/events, together with Merkle proof. The observers verify 
the proof and reach consensus on the verification on-chain. The active mode has the advantage of being 
always live and censorship-resistant due to decentralization, but the cost of each node is high because it 
needs full nodes (of external chains) for the scanning. Passive mode is much less costly, as verification 
can be done with a light client. Only one or a few sequencers need access to a full node, which is much 
cheaper and makes scaling to multiple external chains and more validator nodes much easier. The 
disadvantage of passive mode is that the liveness of external chain inbound observation is dependent on 
the sequencer, and also subject to censorship by the sequencer. This is the same situation as the optimistic 
rollup where the liveness of the rollup is dependent on a sequencer. To mitigate this, everyone is able to 
be a sequencer if they so choose, and a sequencer can be incentivized by the creation of a competitive 
market. In particular, dApps have a vested interest in running a sequencer. Another advantage of running 
passive observation mode with a sequencer is that the dApps are in control of the observation ordering. 
For efficiency reasons, the active mode does not enforce observation ordering, but if the observation 
ordering is important to a dApp, it can opt to run its own sequencer in synchronous observation mode (i. 
e. wait for each observation to be finalized by ZetaChain before moving on to the next). 

4.3. Multi-party Threshold Signature Scheme 

ZetaChain needs to hold an account on external chains in order to custody funds on that chain (manage a 
pool, vault, etc.), and to perform privileged actions (burn, mint, move funds out of the vault, etc.). This is 
required for general-purpose cross-chain smart contracts, as a core feature of smart contracts is to manage 
assets autonomously. On Ethereum for example, a smart contract has an address and can hold any asset 
like an External Owned Address (EOA, normal user account). This ability enables many powerful 
applications such as AMM pools, lending/borrowing pools, etc., where users pool their assets and let 
smart contracts manage them according to a smart contract’s predetermined rules. In order to hold an 
account, ZetaChain needs to have a private key. To avoid a single point of failure (single location of the 
private key, single dealer in generating the key), ZetaChain needs a distributed threshold signature 
scheme. 

This is also needed to support non-smart-contract chains such as Bitcoin, Dogecoin, or smart-contract 
platforms that are expensive to verify multi-sig. To avoid any single point of failure, ZetaChain uses 



state-of-the-art multi-party threshold signature scheme (TSS) [7, 8] based on implementations from 
THORChain TSS [15] and Binance tss-lib [12]. To the outside world, the ZetaChain validators 
collectively possess a single ECDSA/EdDSA private key, public key, and address, and the signature 
signed by ZetaChain can be verified efficiently and natively by standard ECDSA/EdDSA verification 
procedure by the connected blockchains. Internally, the private key is generated without a dealer, and the 
private key is distributed in all the validators. At no time is a single entity or a minority of validators able 
to piece together the private key and sign messages on behalf of the whole network. The key generation 
and signing procedures are done by Multi-Party Computation (MPC) which reveal no secret of any 
participating node. Because ZetaChain can hold a TSS key and address, ZetaChain can support smart 
contracts that can manage native vaults/pools on connected chains including Bitcoin. This effectively 
adds smart contract capabilities to the Bitcoin network, and potentially other non-smart contract 
blockchains. The TSS employed by ZetaChain gives the performance and convenience of hot wallet with 
cold wallet level security. See Figure 3 for an illustration.  

 

 

Figure 3. Leaderless TSS Keygen and Keysign Overview 

To sign in a decentralized manner, ZetaChain employs a multi-party -threshold ECDSA scheme based on 
[7, 8]. This leaderless Threshold Signature Scheme (TSS) performs key generation and signing in a 
distributed fashion. That is, no single validator or outside actor has access to the complete private key at 
any point in time, and no private information is leaked in key generation or signing. For efficiency, 
ZetaChain employs batched signing and parallel signing to improve signers throughput. 

4.4. Cross-Chain Smart Contracts and Zeta Virtual Machine 



The ZetaChain hosts an Ethereum Virtual Machine (EVM) compatible execution layer called ZetaChain 
EVM. Aside from supporting all features of EVM and normal interactions with EVM (contract creation, 
contract interaction, composition of contracts, etc), the distinguishing feature of ZetaChain EVM is that  

●​ contracts on ZetaChain EVM can be called from external chains 
●​ contracts on ZetaChain EVM can generate outbound transaction on external chains 

These two additional features make the ZetaChain EVM a general purpose programmable platform that 
supports cross-chain transactions that alter states in different chains atomically and in a single step.  

4.4.1. Challenges in General Purpose Cross-Chain Transaction 

There are two key challenges in designing a general-purpose cross-chain transaction platform: asynchrony 
and atomicity.  

The first challenge is that communication between chains is necessarily via message passing and 
inherently asynchronous between heterogeneous chains. This means unlike smart contracts on a single 
chain (such as EVM), querying or changing the state of another chain is asynchronous. This precludes the 
common convenient synchronous function calls from cross-chain smart contracts. The cross-chain smart 
contract programming model thus is best considered as a finite state machine, where state change is 
triggered by the messages (observations) from external chains. The app contract thus will be structured as 
a distributed event-driven state machine triggered by messages. This is quite a more complicated 
programming model from the synchronous model of single chain smart contract.  

The second challenge is the atomicity of cross-chain transactions. As cross-chain transactions involve 
altering states on multiple chains, if one part of the state change fails, all previous state changes need to be 
reverted. Blockchains reverts are powerful mechanisms to maintain atomicity, but no blockchain is built 
with consideration such that revert is conditional on what happened on another blockchain. To maintain 
cross-chain transaction atomicity, any cross-chain solution must adequately handle reverts, otherwise 
cross-chain applications will be too onerous to reason about and build. 

In this paper we explore a viewpoint of hybrid UTXO and account-based approach, playing to the 
strengths of each. Essentially, we use UTXO to represent and track external blockchain transactions, and 
use account-based smart contracts for logic and managing shared global states. We treat observed external 
events as a “synthetic” UTXO. A UTXO includes the amount of ZETA coin (burned), amount of another 
coin (optional, for example, BTC on the Bitcoin network where it's impossible to issue ZETA coin), and a 
script msg (roughly equivalent to a message or function call on Ethereum). The smart contract on 
ZetaChain runs the msg and generates an Event that tries to “spend” the UTXO on ZetaChain. The Event 
is then picked up by ZetaClient signers and they will sign a transaction to an external chain. The 
ZetaChain Virtual Machine and ZetaClient will validate certain invariants, one of which is that the output 
ZETA must be equal to the input ZETA in the UTXO. Once the outbound transaction is confirmed and 
observed, the UTXO is marked as “spent” and deleted from the state machine. If the outbound transaction 
fails (insufficient gas, etc.), the UTXO is marked as “revert” and refunds of ZETA and/or associated coins 
are refunded on the source chain. When the refund is confirmed then the UTXO is deleted from the state 
machine. See Figure 4 for an illustration. 



We use the synthetic UTXO model for its accountability, simplicity, and scalability while avoiding the 
key limitation of UTXO which is the expressiveness of its scripting, and awkwardness in certain 
important applications (one TX per block in AMM). 

 

 

Figure 4. Hybrid UTXO-account flow.  

 

4.4.2. Universal Smart Contract 

ZetaChain introduces Universal Smart Contracts, a more efficient alternative to typical cross-chain 
messaging (CCMP) protocols. This model simplifies development by centralizing application logic and 
state into a single contract on ZetaChain's EVM. This avoids the expense, latency, and complexity of 
synchronizing state across distributed contracts on multiple chains, a common issue with CCMP that also 
complicates handling reverts and precludes chains without smart contracts (like Bitcoin). 

A universal smart contract is a ZetaChain EVM contract that can: 

●​ be arbitrarily programmed. 
●​ directly control assets on external chains. 
●​ be called from external chains. 
●​ call contracts and transfer assets to external chains. 

Foreign assets like ETH, BTC, or USDC are controlled by ZetaChain's TSS address on external chains 



and are represented on ZetaChain EVM as ZRC-20 tokens. Any ZetaChain EVM contract can achieve 
universal functionality by implementing the UniversalContract interface and interacting with ZRC-20s. 

interface UniversalContract {​
    function onCall(​
        MessageContext calldata context,​
        address zrc20,​
        uint256 amount,​
        bytes calldata message​
    ) external;​
}​
 

1. Calling a Universal Smart Contract from External Chains 

An inbound call is initiated when a user sends assets to a Gateway Contract (or TSS address on a non 
smart contract chain like Bitcoin)  on an external chain with a memo specifying the destination ZetaChain 
EVM contract and a message. ZetaChain's network observes this transaction and invokes the onCall 
function on the specified contract, populating it with the context of the call (origin chain, sender), the 
ZRC-20 address of the asset, the amount, and the message. The contract then executes its logic. If the 
ZetaChain EVM execution reverts, the protocol automatically creates a transaction to refund the user. 

2. Calling an External Chain Smart Contract from a ZetaChain EVM Contract 

ZetaChain EVM contracts can initiate outbound transactions—both asset transfers and arbitrary function 
calls—through the Gateway ZetaChain EVM contract. This enables two-way communication and 
orchestration of multi-chain logic. 

// A simplified interface for ZetaChain's Gateway on zEVM​
interface IGatewayZEVM {​
    function call(...) external;​
    function withdraw(...) external;​
    function withdrawAndCall(...) external;​
}​
 

To make an outbound call, the  ZetaChain EVM contract must pay the destination chain's gas fee using 
the corresponding gas ZRC-20 token. The process involves calculating the fee, transferring it from the 
user, approving the Gateway, and invoking the appropriate Gateway function (call, withdraw, or 
withdrawAndCall). 

// Sample zEVM function to call an external contract​
function callExternalContract(​
    bytes memory receiver, // External contract address​
    address gasZRC20,      // Destination chain's gas ZRC-20​
    bytes calldata message // Encoded external function call​
) external {​
    // 1. Calculate gas fee for the outbound transaction.​



    uint256 gasLimit = 100000;​
    (, uint256 gasFee) = IZRC20(gasZRC20).withdrawGasFeeWithGasLimit(gasLimit);​
​

    // 2. Collect gas fee from the user and approve the Gateway.​
    require(IZRC20(gasZRC20).transferFrom(msg.sender, address(this), gasFee));​
    IZRC20(gasZRC20).approve(address(gateway), gasFee);​
​

    // 3. Execute the cross-chain call via the Gateway.​
    gateway.call(​
        receiver,​
        gasZRC20,​
        message,​
        CallOptions({gasLimit: gasLimit, isArbitraryCall: true}),​
        RevertOptions({revertAddress: address(this), ...})​
    );​
}​
 

ZetaChain provides robust revert handling. If an outbound call fails, the protocol automatically triggers an 
onRevert function on a developer-specified contract, allowing for graceful error handling and fund 
recovery. 

3. Example: Cross-Chain Swap Application 

A cross-chain swap application demonstrates this model's power, enabling a user to exchange Token A on 
Chain X for Token B on Chain Y in a single transaction, with all logic managed by one ZetaChain EVM 
contract. 

Handling Inbound Swaps (onCall) 

The onCall function serves as the entry point, triggered by a user's deposit on a connected chain. It 
decodes the user's intent, executes the swap logic, and initiates the outbound transfer. 

// Entry point for incoming cross-chain transactions​
function onCall(​
    MessageContext calldata context,​
    address inputZRC20,​
    uint256 amount,​
    bytes calldata message // Contains target token and recipient​
) external override onlyGateway {​
    // 1. Decode message to get the target token and recipient.​
    (address targetZRC20, bytes memory recipient, ...) = abi.decode(message, 
...);​
​

    // 2. Swap input token for the target token and for gas on zEVM.​
    (uint256 outputAmount, address gasZRC20, uint256 gasFee) = 
handleGasAndSwap(...);​
​

    // 3. Initiate the outbound transfer of swapped tokens.​



    withdraw(recipient, outputAmount, targetZRC20, gasZRC20, gasFee);​
}​
 

Executing the Outbound Transfer (withdraw) 

After the swap on ZetaChain EVM, the withdraw function sends the resulting tokens to the recipient on 
the destination chain by calling the Gateway. 

// Sends swapped tokens to the destination chain​
function withdraw(​
    bytes memory recipient,​
    uint256 outputAmount,​
    address targetZRC20,​
    address gasZRC20,​
    uint256 gasFee​
) internal {​
    // 1. Approve the Gateway to spend the gas and target tokens.​
    IZRC20(gasZRC20).approve(address(gateway), gasFee);​
    IZRC20(targetZRC20).approve(address(gateway), outputAmount);​
​

    // 2. Call the Gateway to withdraw tokens to the recipient.​
    gateway.withdraw(​
        recipient,​
        outputAmount,​
        targetZRC20,​
        RevertOptions({revertAddress: address(this), ...})​
    );​
}​
 

This illustrates how the universal model centralizes logic, freeing the developer from managing 
multi-chain deployments and low-level messaging, while the ZetaChain protocol handles the underlying 
complexity. 

Note 1: Contracts that don't need to be called from external chains need not implement the 
UniversalContract interface. 

Note 2: The capabilities of universal contracts are dependent on the available primitives, like the ZRC-20 
standard for fungible tokens. 

Note 3: Deploying logic and state to a single contract on ZetaChain EVM, with protocol-handled reverts, 
makes building universal dApps significantly easier than message-passing alternatives. 

Note 4: This architecture supports non-smart contract chains like Bitcoin, as no contracts need to be 
deployed on the external chains. 

 



4.4.3. Universal Smart Contracts vs. Messaging 

While both mechanisms can support many types of applications, they offer fairly significant differences in 
the architecture those applications would adopt. 

More complicated dApps may prefer Universal Smart Contracts because the logic & state is in a single 
place, whereas with messaging, you must broadcast messages and state sync across many contracts on 
different chains, which can lead to more attack surface and more gas fees (each message requires 
additional gas to be paid, and the number of messages you must send to maintain a full state sync scales). 
In other words, Universal Smart Contracts behave, for developers, as if all assets were on one chain (see 
Figure 5). 

 

 

Figure 5. Universal smart contract-based application. Note that there is a single contract that receives 
input, writes output, maintains state, and orchestrates external assets for the application. The number of 

external transactions required for a Universal dApp increases only based on the required outbound 
transactions, like withdrawing assets to an external chain's address 

Common applications like Uniswap V2/V3, Curve, Aave, Compound, and so on that have been audited 
and battle-tested on Ethereum/EVM can easily be deployed and built on top of in ZetaChain's Universal 
Smart Contracts. One can extend these applications by adding in compatibility with ZRC-20, but those 
changes are minimal and the majority of logic may remain the same, and users may interact with these 
applications in single-step transactions just as they would on Ethereum (or by calling them from external 
chains). On the other hand, with messaging, in many situations (especially those that are more complex), 



a developer must recreate the logic in a completely different, asynchronous messaging and state-sync 
system; messaging cannot leverage existing work in the same way. 

ZRC-20 can easily support Bitcoin/Cardano/XRP which do not have capability or efficiency to support 
general purpose smart contracts for applications like swapping, lending, etc. Messaging cannot work for 
these chains, because messaging requires smart contracts on any connected chain. 

 

 

Figure 6. Messaging-based application. Note that for contracts to stay in sync across connected chains, 
the number of messages required increases exponentially with the number of chains involved. 

Messaging generally makes sense in simpler use cases between 2 or just a few chains, or where state 
should heavily be based in one chain, and sent or interacted with from other chains. Application-specific 
bridges, for example, where the goal is simply to get data/value into one chain, could make sense to build 
with messaging. Applications that must utilize contracts on external chains may also need a 
messaging-based component. For more complex applications, the number of messages (and thus 
gas/transactions) required to synchronize state across multiple chains can increase exponentially with the 
number of chains involved (see Figure 6). For example, managing a vault or lending protocol with assets 
across many chains could be difficult to manage with just messaging. 

Message passing style logic and state are distributed on asynchronous chains which adds significant 
complexity to maintaining cross-chain transaction atomicity, and forces dApps to program in an event 
(message) driven way that is generally harder to do than synchronously in a single chain. Universal smart 



contracts on the other hand offer the novel ability to develop multichain applications in a more 
synchronous, atomic environment as if they were on one chain.  

4.4.4. Fees & Gas 

To prevent spam and ensure fair and efficient use of the blockchain resources (compute and storage), the 
user must pay proper fees for processing the cross-chain transaction. 

Unlike transactions on a single chain, a cross-chain transaction naturally might involve several different 
gas assets and need to pay more than one type of tokens for gas fees. This is rather inconvenient, and may 
add undue operational cost or risk to operate the cross-chain solution. For example, if one invokes a 
contract on Ethereum from BSC chain, the user needs to pay both BNB and Ether as gas fees; but how 
can the user pay Ether on BNB? Do they need to acquire “wrapped” Ether on BSC? Which version of the 
wrapped Ether? Who wraps and unwraps the Ether?  

Alternatively, one might just ask the user to pay in a single asset (for example, only BNB), and then some 
off-chain service converts the BNB into Ether to reimburse the protocol which needs to pay Ether for the 
outbound tx processing. This is quite an operational burden, and runs counter to the autonomous nature of 
sovereign blockchain that does not need centralized operator.  

ZetaChain completely automates the gas handling and conversion on-chain, and with market force to 
maintain proper conversion rate. Also, the conversion of different gas assets are synchronous with the 
CCTX itself so the settlement is as fast as possible. The way ZetaChain does it is to rely on ZRC20 and 
their AMM pools on ZetaChain EVM (currently Uniswap v2 pools). All gas assets have a corresponding 
ZRC20 which pairs with ZETA (native gas token on ZetaChain EVM) on  ZetaChain EVM.  

Let us consider the two cases when the user needs to pay gas fees in coins they might not have:  

●​ In message passing, the user pays a single asset (ZETA token) for all gas fees. The ZetaChain 
protocol converts proper amounts of ZETA into outbound chain gas asset ZRC20 synchronously 
and use the balance to pay outbound transaction gas fees. 

●​ In universal smart contract ZRC20, when a user (or a smart contract) wishes to withdraw the 
foreign asset, the user will need to pay the outbound gas fee. The withdrawing smart contract can 
acquire the outbound chain gas asset ZRC20 from the internal AMM pools on ZetaChain EVM to 
pay gas synchronously.  

In either case, the multi-gas handling of ZetaChain is sound (which means that the protocol always has 
enough gas asset to pay outbound tx gas fees), and the conversion rate is determined by market force. As 
ZetaChain EVM ZRC20 assets are easily withdrawn to external chain with on-chain contracts, the 
markets on ZetaChain EVM are connected with other markets therefore we can expect market forces to 
maintain price parities.  

5. Use Cases & Applications 



In this section we discuss some sample applications of ZetaChain. These examples are not anywhere near 
comprehensive, since the general smart contract and interoperability capabilities of ZetaChain provide a 
platform for virtually unlimited creativity in terms of universal application-building. 

5.1. Smart Contract Managed External Assets 

A powerful feature of smart contracts is that smart contracts can hold any assets that a normal account can 
hold, and are able to receive and spend that asset according to programmed logic. However, important 
blockchains like Bitcoin, Dogecoin, Monero, etc., do not have general enough smart contract capability to 
support useful applications such as AMM exchanges, collateralized borrowing/lending markets with 
pools, and the like. There is currently no way to involve native Bitcoin (without wrapping) in arbitrary 
logic in a decentralized and permissionless manner. The cross-chain smart contract capability of 
ZetaChain can hold and use assets on external chains directly, therefore enabling smart contract managed 
native Bitcoin on ZetaChain, among other native assets such as ETH, ERC20, Algorand ASAs, etc. 
Furthermore, through ZetaChain smart contracts and with message passing, cross-chain dApps can be 
easily composed with smart contracts on the participating chains, with ZetaChain smart contracts 
managing native Bitcoin vaults. 

Let us look at an example in some detail. The mechanism for ZetaChain smart contracts to manage BTC 
on Bitcoin is as follows. The initialization of smart contract requests KeyGen to generate a TSS key which 
acts as the address of a Bitcoin vault. The ZetaClient will monitor the TSS address and upon identifying 
incoming transactions to the TSS vault, it parses the data from the Bitcoin transaction in OP_RETURN 
and invokes the zetaProcess function with the parsed data on the smart contract. The smart contract 
takes actions accordingly (such as credit to certain accounts, sending out another asset according to AMM 
pricing, etc.). To send out Bitcoin from the smart contract, the smart contract emits a specific Event that 
the ZetaClient will pick up and sign & broadcast to the Bitcoin network. The smart contract must also 
implement a function zetaExternalTxConfirm which will be invoked when the outbound external 
chain transaction is mined. 

5.2. Universal Stablecoins  

Stablecoins (blockchain-issued tokens pegged to real currencies) are gaining significant traction. 
However, multiple issuers often issue stablecoins for the same currency (e.g., USD), and a single issuer 
like Tether or Circle may issue the same stablecoin across various blockchains. Users face challenges in 
selecting a blockchain for storage and then moving stablecoins to the needed chain quickly, cheaply, and 
reliably. 

ZetaChain enables a simple abstraction for a universal USD, backed by multiple USD stablecoins from 
different blockchains, while maintaining fluidity across chains (on-demand redeemability to different 
chains). This solution on ZetaChain will be fully decentralized and programmable, enhancing 
transparency and trust. 

One method for building a universal USD Stablecoin, backed by, for example, 16 USDC on chains X, Y, 
Z, etc. (connected to ZetaChain), involves the following: First, USDC.X, USDC.Y, and USDC.Z have 
their respective ZRC20 representations on ZetaChain (an ERC20-compatible token contract with 



specialized input/output functionality to/from connected blockchains X, Y, Z…). A portion of USDC.X, 
USDC.Y, and USDC.Z liquidity is pooled in an AMM contract like CurveStableSwapNG, optimized for 
capital-efficient swaps between stable asset groups. The liquidity position (LP token) of such a pool can 
serve as the unified USDC, exchangeable for any USDC.XYZ. 

Furthermore, since ZRC20 contracts are natively invokable from connected blockchains, the user 
experience can be improved by providing a deposit function from chains XYZ: USDC.X -> Unified 
USDC in one cross-chain transaction. Similarly, ZRC20 USDC.X can be redeemed back to USDC on 
chain X natively via a cross-chain transaction. Therefore, the unified USDC can represent a unified USD 
coin fluid across various USDC issues on different chains (X, Y, Z…), available to users on-demand. All 
infrastructure is decentralized, requiring no centralized party. See Figure 7 for an illustration. 

 

 

Figure 7. Universal stablecoin on ZetaChain. Liquidity from multiple USD-pegged assets on different 
blockchains (e.g., USDC.X, USDC.Y, USDC.Z) is represented as ZRC-20 tokens and pooled in an 

on-chain AMM to form a unified stablecoin on ZetaChain. This universal USD can be freely swapped or 
redeemed natively to any connected chain in a single decentralized transaction. 

5.3. Cross-chain AMM Exchanges 

ZetaChain can enable true cross-chain AMM decentralized exchanges, built on top of smart contracts. 
There are two ways of constructing an AMM DEX on ZetaChain: message passing and native ZetaChain 
smart contracts. The key difference is whether the pool is managed by an external smart contract or native 
ZetaChain smart contract. With message passing, the asset pool is managed by smart contracts on external 



chains; with the native ZetaChain smart contract approach, the pool is managed by ZetaChain smart 
contracts through a TSS account. 

Specifically, in message passing, the assets are managed by smart contracts on external chains, paired 
with a ZETA coin. A swap of asset X on chain A for asset Y on chain B can be accomplished by: 1) swap 
X for ZETA on chain A using smart contract managed pool and AMM; 2) pass message, together with the 
ZETA coin from chain A to chain B; 3) chain B smart contract managed pool (Y/ZETA) swaps ZETA 
coin for Y. 

With native ZetaChain smart contracts, the ZetaChain TSS account holds all the native assets on external 
chains, which can be managed by ZetaChain contracts directly. The ZetaChain smart contract implements 
AMM logic that determines pricing, swap, liquidity providers, and fees. 

In the message passing approach, the dApp states and logic are spread across all the external chains; 
ZetaChain only acts as a message verifier and relayer. The advantages in this approach is that existing 
infrastructure can be reused (for example, on EVM chains Uniswap contracts can be reused to manage 
pool X/ZETA), and the dApp needs only to handle the cross-chain messaging to implement conditional 
execution. On the other hand, in the native ZetaChain smart contract approach, the logic and state of the 
dApp lives on ZetaChain, a single platform with a unified interface to interact with external chains. The 
advantages in this approach are the ease of dApp development (minimal development efforts in 
accommodating new chains), and flexibility (no longer constrained to chain idiosyncrasies and 
message-passing cross-chain interaction). Additional benefits are that it relies on smart contracts on 
external chains minimally, so complex logic can work on not only smart-contract chains but also UTXO 
chains like Bitcoin. 

 



 

Figure 8. DEX built with ZetaChain message passing. Leveraging external chain smart contract DEXs, 
one can build a cross-chain swap by sending messages with ZETA. 

 

 

Figure 9. DEX built with ZetaChain Smart Contracts. Since ZetaChain TSS can manage external chain 
pools with its smart contracts, DEX can even support non-smart-contract chains and assets where 

transactions are simple and single-step. 

5.4. Cross-chain message passing with value/data 

The ability to reliably and securely pass messages from one chain to another can enable powerful 
cross-chain applications, even without native ZetaChain smart contracts. The message passing 
functionality consists of communication endpoints on all external chains. The ZetaChain validators serve 
as a Byzantine Fault Tolerant notary that attests the validity of events/transactions on chain A to chain B, 
and as a relayer of messages. Chain B's smart contract only needs to whitelist the TSS address of 
ZetaChain in order to trust that ZetaChain has verified the events on chain A. This allows conditional 
execution on chain B's contract depending on transactions/messages from chain A, which opens a wide 
range of cross-chain dApps, such as AMM DEXs, NFT, etc. (see more below). An important and 
convenient feature of the ZetaChain system is that the messages can be attached with value in the form of 
the ZETA coin (natively cross-chain), which considerably simplifies dApps which require moving the 
value cross- chain. 



The messaging service of ZetaChain consists primarily of interface contracts on the connected chains. To 
access the message passing service, a dApp needs to deploy a smart contract on both the source chain and 
destination chain. On the source chain, the sending smart contract can invoke a zeta.MessageSend 
function with the following information: sending address, destination chain id, destination contract 
address, ZETA coin to transfer, gas limit on destination chain, contract message for destination transaction 
(binary or JSON encoded payload), and transaction index. The sending contract must implement a 
zetaMessageRevert function, which will be called by ZetaChain when the destination message delivery 
and processing of a transaction fails (for example, due to out of gas, out of funds, invalid message, etc.). 
Upon failure, the ZetaChain system will refund the ZETA coin to the sending address (less gas fees), and 
invoke the dApp contract zetaMessageRevert function which is supposed to revert application actions 
(unlocking a locked NFT, for example). On the destination chain, the dApp contract must implement a 
function zetaMessageReceive which takes the same parameters as the sendingzeta.MessageSend, 
and can perform application logic (such as minting an NFT that has been locked on the source chain). The 
destination contract will also receive a ZETA coin (less gas fee), which can be used as a value transfer 
cross-chain. 

Message passing can enable a variety of important applications such cross-chain DEX, 
borrowing/lending, multi-chain NFT, etc.  

5.5. Multi-chain NFT 

Non-fungible Token (NFT) is an emerging concept that has found use in art collection, gaming, event 
tickets, and many other applications. In contrast to fungible tokens such as ETH, BTC, or ERC-20 tokens, 
each NFT is unique and not interchangeable with another NFT in the same collection. This 
non-fungibility can be essential in applications such as art, real-estate, etc. On Ethereum, for example, the 
most common NFT standards are ERC-721 and ERC-1155. In ERC-721, an NFT is basically a tuple 
(contractAddress, tokenId). The smart contract that issues the NFTs keeps track of the owners of 
each NFT in a map owner=>tokenId. The NFT can be transferred from one owner to another, and each 
NFT owner can be queried. 

In a multi-chain NFT world, where the same collection of NFTs are issued on multiple chains (such as 
Ethereum, Flow, Solana), and one NFT can transfer to another chain, a challenge in the bridge model is 
the knowing the provenance of a given NFT – who is the owner of a given NFT now that the NFT could 
be on one of multiple chains and where are the records of the transactions of the transfers? This problem 
can be solved by ZetaChain smart contracts which facilitate cross-chain ownership transfers of NFTs. It 
can work as follows. Each chain will have an escrow smart contract controlled by the ZetaChain key. To 
transfer an NFT to another chain, one transfers the NFT to the escrow, pays transaction fee in ZETA coin, 
and ZetaChain will mint the NFT on the destination chain. The smart contract on ZetaChain keeps track 
of the owner and blockchain where the NFT is at any given time. While there have been experimental 
cross-chain NFT bridges, having a decentralized issuing authority allows an NFT to be natively 
cross-chain, making it simpler and feasible to create, verify, and exchange NFTs cross-chain. 



 

 

Figure 10. Multi-chain NFT. With a decentralized issuing authority (ZetaChain TSS), one can have an 
NFT that is easily sent between chains, where ownership and current location are easily verifiable. 

5.6. Other Use Cases 

These are just a few other potential use cases of ZetaChain. Given ZetaChain is a general smart contract 
platform, you can also imagine that any application you deploy on a single blockchain/smart contract 
platform can be expanded to operate across all connected chains. 

5.6.1. Universal Payments 

A system that lets users/EOAs send payments from/to any asset on any chain. This can help vendors and 
customers have a decentralized, universal, and accessible payments route that doesn’t require users to 
have a hyper-specific set of assets on a specific chain.  

5.6.2. Universal Identity and Assets 

Identity system, name service, or Soul Bound Tokens that can serve as identities across all chains. With 
universal capabilities, identities can interact with other chains agnostically and in a future-proof manner 
as ZetaChain adds support for more chains. Users need not have individual identities/domains per chain, 
and can utilize their assets (gaming, collectibles, fungible tokens, etc.) from all chains from a single place. 

5.6.3. Multi-chain, Multi-signature vaults 



Securely custody and manage assets on multiple chains with a multi-sig that involves accounts and/or 
messages from many chains. 

5.6.4. Universal Account Abstraction or Smart Contract Wallets 

Smart contract wallets that can manage transactions to/from all chains, allowing things like “gasless” 
transactions, complex/multi-transactions, etc. that involve multiple chains. This could be imagined as an 
EIP-4337 but with universal capabilities. 

5.6.5. Universal DeFi 

DEXs, lending/borrowing, perps, and so on can support seamless 1-step trades and transactions that unify 
liquidity across chains. Leveraging universal smart contracts, one can significantly reduce common 
complexity and concerns of slippage, race-conditions, MEV that are involved with transacting fungible 
tokens that are often involved in today’s cross-chain applications. Financial applications spanning many 
chains can be built with the same logic as if they were all on one chain. 

5.6.6. Universal DAOs 

Decentralized Autonomous Organizations and governance tooling that lets groups of people orchestrate 
activity, governance, and asset management in a chain-agnostic manner. 

6. Security 

6.1. Decentralization 

The ZetaChain system is designed to not have a single point of failure, primarily through decentralization.  

ZetaChain is decentralized architecturally and infrastructurally. Decentralization is an effective way to be 
fault tolerant, resist attacks and collusions. The ZetaChain nodes are run by individuals or organizations 
without permission. No single point of failure in ZetaChain node (ZetaCore, ZetaClient) affects the 
system. 

On the other hand, to effect changes in external chains, ZetaChain must act as a single entity to sign 
messages, therefore raising the issue of centralized signing key. ZetaChain utilizes GG20 leaderless 
Threshold Signature Scheme (TSS) which does the key generation and key sign in a distributed, 
decentralized way. No single ZetaChain node or other individual ever has access to the complete private 
key at any point in time. Effectively, the ZetaChain node (the signer in ZetaClient, to be specific) has 
equal “vote” in signing outbound transactions, like in an m/n multisig. 

To strike a balance between decentralization and coordination, certain aspects of ZetaChain are not fully 
decentralized, or designed to evolve into more decentralized gradually. For example, the software is 
currently developed by a central entity, which means the system is susceptible to software bugs from a 
single source. To defend against bugs ZetaChain employs multi-level blanket protection, to be discussed 
in more detail below. 



6.2. Securing Inbound and Outbound Transactions 

The ZetaCore takes in events from the observers in the ZetaClients. The ZetaClients monitor events on 
external chains via a variety of sources–node as service providers such as Infura, their (validator operator) 
own instance of full node, or full node run by the developers and partners. The observed event (as an 
inbound transaction to ZetaChain) must reach consensus on the ZetaCore to trigger state changes in the 
ZetaCore. 

The state change in ZetaCore causes the signers of ZetaClient to prepare, sign, and broadcast transactions 
to external chains. ZetaChain's consensus mechanism ensures that the transaction is agreed upon; the TSS 
key ensures that only super majority of ZetaClients can sign. 

All the inbound/outbound transactions and decisions made (through state changes) are recorded in the 
ZetaChain blocks which are available, immutable, verifiable, and completely transparent. 

6.3. Comprehensive Defense Against Arbitrary Minting 

Since the only native value that can move cross-chain through ZetaChain is the ZETA token, and 
ZetaChain effectively only manages transferring ZETA token from chain A to chain B, it's possible to 
offer comprehensive protection against the only way to steal value from ZetaChain: invalid minting that 
inflates the total supply of ZETA across chains. 

We offer comprehensive protection against minting without commensurate burning as follows: 

ZetaChain nodes will check total supply across chains before initiating the minting of ZETA token. This 
protects against software bugs or vulnerability in the ZetaChain node software. The token contracts on the 
chains (except on Ethereum, where a locking contract will assume the role) checks total supply of ZETA 
across chains before minting. The total supply of ZETA is provided by Chainlink and posted on each 
connected chain. This protection ensures that no one can arbitrarily mint and that the total supply of 
ZETA remains fixed across chains. It should be noted that the two comprehensive defenses, while 
providing strong protection against software bugs and stealing from ZetaChain (including every holder of 
the ZETA token), they do not eliminate exploits. For example, if the attacker gains control of 2/3 
validators, or the attacker is able to exploit a bug in the software, he is able to redirect a legitimate mint 
from another user to his wallet. However in these worst-case scenarios the impact is likely to be contained 
as the attacker can only steal from active users at that specific time, and the system would be promptly 
stopped once noticed by users. 

In summary: the funds at risk in the worst-case scenario is only the ZETA amount that is being moved 
cross-chain at the time of the exploit. Funds at rest are never at risk. 

6.4. What Happens When External Chains are Attacked 

If the external chains connected by ZetaChain are being attacked (such as 51% attack), which can result in 
the following violations: 1) double spend leading to inflated supply of ZETA token; 2) censorship; 3) 
reversion leading to loss of atomicity of cross-chain transaction, as the source part might be no longer 
existing; 4) hard fork, chain split; and more. The design of ZetaChain can mitigate a few of these cases, or 



contain the damage from unlimited spreading. For example, an external chain causing unlimited mint (by 
repeatedly reverting and paying) cannot happen because of the total supply check of ZetaChain. By 
extension, the dApps that use ZETA coin for all cross-chain value transfer are also protected from 
unlimited inflation. For other external chains that are being exploited, the ZetaChain should go into an 
emergency halt to assess the situation. The recovery will be coordinated by stakeholders and governance 
mechanisms. 

7. Conclusion 
In this whitepaper we survey the landscape of cross-chain interoperability. While bridging is the main 
solution today and the focus of many emerging projects, ZetaChain explores a more ambitious and 
general approach: native cross-chain smart contracts that directly interact with nearly any external 
blockchain. No wrapping around assets are needed to transfer values cross-chain and no bridges are 
needed for every pair of blockchains. The ZetaChain smart contract can custody assets on an external 
chain directly, and manages assets according to predetermined arbitrary logic. Every external chain 
interaction is settled on external chains directly. As such, ZetaChain provides the most general platform 
for decentralized cross-chain applications to build on with connections to almost any existing or future 
blockchain and/or L2/rollup, with access to the whole supply of native assets on those chains. 

References 
[1]Rafael Belchior, André Vasconcelos, Sérgio Guerreiro, and Miguel Correia. “A Survey on Blockchain 
Interoperability: Past, Present, and Future Trends.” ACM Computing Surveys (CSUR) 54 (8). ACM New 
York, NY: 1–41. 2021. 🔎 

[2]“Chain Key Cryptography: The Scientific Breakthrough Behind the Internet Computer.” 
https://medium.com/dfinity/chain-key-technology-one-public-key-for-the-internet-computer-6a3644901e
28. 🔎 

[3]“Connext Documentation.” https://docs.connext.network/. 🔎 

[4]“Ethereum/BTCRelay.” github.com/ethereum/btcrelay. 🔎 

[5]“ETH-NEAR Rainbow Bridge.” https://near.org/blog/eth-near-rainbow-bridge/. 🔎 

[6]“FUSION Whitepaper.” https://fusion.org/en. 🔎 

[7]Rosario Gennaro, and Steven Goldfeder. “Fast Multiparty Threshold ECDSA with Fast Trustless 
Setup.” In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications 
Security, 1179–1194. CCS ’18. Association for Computing Machinery, New York, NY, USA. 2018. 
doi:10.1145/3243734.3243859. 🔎 

[8]Rosario Gennaro, and Steven Goldfeder. “One Round Threshold ECDSA with Identifiable Abort.” 
IACR Cryptol. ePrint Arch. 2020: 540. 2020. 🔎 

[9]“Hop: Send Tokens Across Rollups.” https://hop.exchange/whitepaper.pdf. 🔎 

http://www.bing.com/search?q=A%20survey%20on%20blockchain%20interoperability%3A%20Past%2C%20present%2C%20and%20future%20trends%20Belchior%2C%20Vasconcelos%2C%20Guerreiro%2C%20and%20Correia%2C%202021
http://www.bing.com/search?q=Chain%20Key%20Cryptography%3A%20The%20Scientific%20Breakthrough%20Behind%20the%20Internet%20Computer%20n.d.%2C%20
http://www.bing.com/search?q=Connext%20Documentation%20n.d.%2C%20
http://www.bing.com/search?q=Ethereum%2FBTCRelay%20n.d.%2C%20
http://www.bing.com/search?q=ETHNEAR%20Rainbow%20Bridge%20n.d.%2C%20
http://www.bing.com/search?q=FUSION%20Whitepaper%20n.d.%2C%20
https://dx.doi.org/10.1145/3243734.3243859
http://www.bing.com/search?q=Fast%20Multiparty%20Threshold%20ECDSA%20with%20Fast%20Trustless%20Setup%20Gennaro%20and%20Goldfeder%2C%202018
http://www.bing.com/search?q=One%20Round%20Threshold%20ECDSA%20with%20Identifiable%20Abort.%20Gennaro%20and%20Goldfeder%2C%202020
http://www.bing.com/search?q=Hop%3A%20Send%20Tokens%20Across%20Rollups%20n.d.%2C%20


[10]Jae Kwon, and Ethan Buchman. “Cosmos: A Network of Distributed Ledgers.” URL 
Https://cosmos.network/whitepaper. 2016. 🔎 

[11]Zhuotao Liu, Yangxi Xiang, Jian Shi, Peng Gao, Haoyu Wang, Xusheng Xiao, Bihan Wen, and 
Yih-Chun Hu. “Hyperservice: Interoperability and Programmability across Heterogeneous Blockchains.” 
In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, 
549–566. 2019. 🔎 

[12]“Multi-Party Threshold Signature Scheme.” https://github.com/binance-chain/tss-lib. 🔎 

[13]Caleb Banister Ryan Zarick Bryan Pellegrino. “LayerZero: Trustless Omnichain Interoperability 
Protocol.” URL https://coinweb.io/files/Coinweb-Whitepaper.pdf. 2021. 🔎 

[14]“Synapse Protocol Documentation.” https://docs.synapseprotocol.com/. 🔎 

[15]THORChain.org. “Decentralized Liquidity Network.” URL 
https://github.com/thorchain/Resources/blob/master/Whitepapers/THORChain-Whitepaper-May2020.pdf. 
2020. 🔎 

[16]URL Https://chainflip.io/. “Chainflip.” 2025. 🔎 

[17]URL Https://wormholenetwork.com/en/about/. “Wormhole.” 2025. 🔎 

[18]URL Https://www.quant.network/. “Quant Network.” 2025. 🔎 

[19]URL https://www.axelar.network/. “Axelar | The Gateway To Open Finance.” 2025. 🔎 

[20] EIP-7683: Cross Chain Intents, URL https://eips.ethereum.org/EIPS/eip-7683🔎 

 

 

 

http://www.bing.com/search?q=Cosmos%3A%20A%20network%20of%20distributed%20ledgers%20Kwon%20and%20Buchman%2C%202016
http://www.bing.com/search?q=Hyperservice%3A%20Interoperability%20and%20programmability%20across%20heterogeneous%20blockchains%20Liu%2C%20Xiang%2C%20Shi%2C%20Gao%2C%20Wang%2C%20Xiao%2C%20et%20al.%2C%202019
http://www.bing.com/search?q=MultiParty%20Threshold%20Signature%20Scheme%20n.d.%2C%20
http://www.bing.com/search?q=LayerZero%3A%20Trustless%20Omnichain%20Interoperability%20Protocol%20Ryan%20Zarick%2C%202021
http://www.bing.com/search?q=Synapse%20Protocol%20Documentation%20n.d.%2C%20
http://www.bing.com/search?q=Decentralized%20Liquidity%20Network%20THORChain.org%2C%202020
http://www.bing.com/search?q=Chainflip%202021a%2C%20
http://www.bing.com/search?q=Wormhole%202020%2C%20
http://www.bing.com/search?q=Quant%20Network%202021c%2C%20
http://www.bing.com/search?q=Quant%20Network%202021c%2C%20
http://www.bing.com/search?q=Quant%20Network%202021c%2C%20

	1. Introduction 
	2. Background: Evolution of Blockchains 
	2.1. Bitcoin: the original decentralized cryptocurrency 
	2.2. Ethereum: the programmable blockchain with smart contracts 
	2.3. Emergence and challenges of multi-chain 

	3. Interoperability Related Work 
	3.1. Cross-chain Communication 
	3.2. Cross-blockchain Asset Transfer 
	3.3. Cross-blockchain Smart Contract 
	3.4. Blockchain of Blockchains (BoB) 

	4. ZetaChain Blockchain Architecture 
	4.1. Overview 
	4.2. Observers 
	4.3. Multi-party Threshold Signature Scheme 
	4.4. Cross-Chain Smart Contracts and Zeta Virtual Machine 
	4.4.1. Challenges in General Purpose Cross-Chain Transaction 

	4.4.2. Universal Smart Contract 
	1. Calling a Universal Smart Contract from External Chains 
	2. Calling an External Chain Smart Contract from a ZetaChain EVM Contract 
	3. Example: Cross-Chain Swap Application 
	4.4.3. Universal Smart Contracts vs. Messaging 
	4.4.4. Fees & Gas 


	5. Use Cases & Applications 
	5.1. Smart Contract Managed External Assets 
	5.2. Universal Stablecoins  
	5.3. Cross-chain AMM Exchanges 
	5.4. Cross-chain message passing with value/data 
	5.5. Multi-chain NFT 
	5.6. Other Use Cases 
	5.6.1. Universal Payments 
	5.6.2. Universal Identity and Assets 
	5.6.3. Multi-chain, Multi-signature vaults 
	5.6.4. Universal Account Abstraction or Smart Contract Wallets 
	5.6.5. Universal DeFi 
	5.6.6. Universal DAOs 


	6. Security 
	6.1. Decentralization 
	6.2. Securing Inbound and Outbound Transactions 
	6.3. Comprehensive Defense Against Arbitrary Minting 
	6.4. What Happens When External Chains are Attacked 

	7. Conclusion 
	References 

