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ZetaChain

Abstract. This white paper proposes ZetaChain, a blockchain with generic universal smart
contract support that connects both smart contract blockchain such as Ethereum, Ethereum
L2 rollups and EVM compatible chains (Polygon, Avalanche, BSC), Solana, SUI, and
TON network, and even non smart contract blockchains such as Bitcoin and Dogecoin.
ZetaChain consists of a Proof-of-Stake blockchain and observers and signers for external
blockchains. The observers scan external chains for relevant events, transactions, and
states at a point in time, and reach consensus on observation on ZetaChain’s blockchain.
The signers collectively possess a single Threshold Signature Scheme (TSS) key that is
able to send authenticated messages to external chains and hold assets like normal
accounts/addresses on external chains. Smart contracts on ZetaChain support arbitrary
logic that executes conditionally on external chain events, and can directly update external
chain states via its TSS signed transactions. ZetaChain thereby enables universal dApps
that interact with different blockchains natively and directly without wrapping or bridging
any assets.

1. Introduction

It's hard to imagine a single blockchain would suffice for all our society's use cases. A multi-chain future
seems inevitable. However, a multi-chain future without interoperability between the blockchains could
be paralleled to the Internet before TCP/IP. Today's blockchains are too fragmented and are by-nature not
interoperable, hindering mass adoption of the technologies. For example, a decentralized application
(dApp) must be married to a specific blockchain. If a user onboards into the crypto ecosystem through a
given dApp, this fragmentation makes immense barriers for the user to fluidly adopt or try a dApp on
another chain. To address the issues of interoperability, there have been a few proposals and projects that
specifically emphasize the ability to interoperate. However, the majority of interoperability systems only
apply to specific blockchains, standardize their protocols within their own systems requiring other
blockchains to adopt or through complicated, restricted, and/or less secure bridges to join (see Figure 1).
In this whitepaper we propose a novel, public L1 blockchain that actively and agnostically connects
blockchains and facilitates interoperability. Furthermore, we propose a generic smart contract on
blockchain that can hold and manipulate assets on external blockchains directly, thereby enabling generic



smart contracts that can custody assets on external chains. This opens the door to boundless cross-chain
dApps.

Blockchains are naturally closed systems. The goal of this whitepaper is to design and specify a practical
system that is generic in its inter-blockchain capability, without forcing existing blockchains to adopt new
standards or a new blockchain that every asset needs to move to, and do so in a decentralized, byzantine
fault tolerant way. In other words, we aim to create a public blockchain that supports real cross blockchain
transactions, message delivery, and general cross-chain smart contracts. According to our extensive
survey, to satisfy this goal, the best pragmatic approach is the decentralized notary scheme on top of an
incentivized Proof-of-Stake replicated state machine (aka blockchain) which we call ZetaChain.

ZetaChain is first of all a public blockchain with Proof-of-Stake validators. It's trusted that a super
majority (>66% nodes) of the validator nodes are honest and act according to protocol, and collectively
serve as notaries. In addition to being a blockchain, interoperability requires observing other blockchains.
Thus each ZetaChain validator node is attached with an observer that scans other blockchains for relevant
events (event log, transaction, or state at a certain time). The observers report the relevant events to
ZetaChain and reach consensus. ZetaChain uses custom logic to update its state in response to the
reported events. On the other hand, in order to change state on other blockchains, each validator is also
attached with a signer holding a key share. Collectively all the validators hold a single public/private key
pair which can initiate transactions on other blockchains to change state directly. The signature scheme
can be some kind of threshold signature scheme such as GG18/GG20 ECDSA/EdDSA, or BLS
threshold/aggregate signatures, depending on the cryptography on different chains and their smart
contract capability/cost. The presence of a single public key and address in the ZetaChain system allows
ZetaChain to custody assets on external blockchains which might not have adequate smart contract
capability such as Bitcoin. Such ability allows powerful cross-chain (or ‘universal’) dApps to be built on
top of native ZetaChain cross-chain smart contracts. This capability looks much like on Ethereum where a
smart contract can be trusted to manage assets according to predetermined rules, except on ZetaChain, a
smart contract can leverage and manage assets on any connected blockchain.

In summary, ZetaChain is designed to be a decentralized cross-blockchain smart contract platform. The
vision of ZetaChain is to be a public computer on all important blockchains, on top of which
cross-blockchain decentralized applications can be easily built as public, trustless, and persistent smart
contracts.
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Figure 1. Before and After ZetaChain. Sub figure (a) on the left: Current ecosystem. Users and
developers are siloed into respective chains, and current cross-chain solutions are disparate, resulting in
major, growing fragmentation. Sub figure (b) on the right: Ecosystem with ZetaChain. Users, developers,
and apps can operate across chains in a seamless manner. New paradigm of Universal dApps enabled.

2. Background: Evolution of Blockchains

2.1. Bitcoin: the original decentralized cryptocurrency

Blockchain, pioneered by Bitcoin, is a decentralized and permissionless public ledger built on
cryptography. The core mechanism is byzantine fault tolerant distributed consensus, which Bitcoin solved
by a combination of techniques from cryptography, economic incentives, and computer science. Key
innovations in Bitcoin include the use of elliptic curve digital signatures algorithm (ECDSA) for
self-custody of funds, and the use of Proof-of-Work to reach distributed consensus (ordering of the ever
growing log of transactions) and maintain resistance against sybil attacks. Bitcoin also introduces the first
major application of blockchain technology—a p2p cryptocurrency. The Bitcoin network has been highly
successful, even though it has not fulfilled its promise of being electronic cash. Rather, Bitcoin has
become the most secure, decentralized, and stable store of value due to its technical simplicity and
robustness, high degree of decentralization and low barrier of participation, and predictable and
conservative monetary policy.



The Bitcoin network consists of nodes connected by a p2p network. Participants include users and miners.
The Bitcoin network collectively maintains a growing ledger that is a sequence of user transactions. A
user transaction is a signed message that “spends” a certain amount of coins controlled by the user. The
Bitcoin network does not explicitly maintain the balance state of each account; the only state of the
network is the set of current UTXOs—unspent transaction outputs. A user’s balance of BTC is the sum of
all UTXOs that can be spent by the user. A user transaction includes one or more UTXOs as inputs, and
creates one or more UTXOs as outputs, thus changing the state (UTXO set). Bitcoin supports a limited
form of scripting: a transaction can send coins to a script, and whoever can satisfy the script (i. e. supply
data to make it evaluate to 1) may spend the coins. The scripting language is deliberately simple and
Turing-incomplete —namely without branch and looping structures — but supports quite a few simple
but fundamentally useful applications such as multi-sig, atomic swaps, etc.

2.2. Ethereum: the programmable blockchain with smart contracts

While Bitcoin is conceptually a simple ledger (ordered sequence of transactions) with basic scripting
features that has served as the canonical example of a blockchain, it is not the limit of what a blockchain
can do. For example, due to the limited scope of the verification function of the Bitcoin protocol, it’s not
possible to issue new coins on the Bitcoin network. The Bitcoin network is not programmable in the sense
that an arbitrary state transition function can be implemented. The only state transition function that
Bitcoin supports is the hard-coded UTXO set change. In summary, no applications other than BTC
currency can piggy-back on the Bitcoin network, inheriting its consensus, decentralization, and security.
To extend the scope of blockchain to support Turing-complete programmability, Ethereum was born.
Ethereum borrows the Proof-of-Work from Bitcoin for its consensus, and has made several important
innovations that make it a public programmable blockchain. First, Ethereum defines a virtual machine
(EVM) that provides a Turing-complete sandbox environment to specify arbitrary state transition
functions (smart contracts). Second, Ethereum moves away from the UTXO model in Bitcoin to an
account-based system where account store state. There are two kinds of accounts: External Owned
Accounts (EOAs) which are controlled by a private key, and smart contract accounts which work
autonomously according to their own logic. The availability of smart contracts on Ethereum makes it one
of the most widely used dApp blockchains with thousands of applications deployed, such as financial
derivatives, exchanges, NFTs, gambling, and games. Smart contracts on Ethereum are like objects in an
object-oriented programming language where state can be stored and functions can be called to change its
state. Users can interact with smart contracts by sending messages to it, and smart contracts can also send
messages to other smart contracts (invoking) to change their state. The smart contracts can enable very
complex applications, and can enable some very powerful operations such as flash loans or flash swaps
that have no analogy in non-blockchain applications. This is made possible by the powerful atomicity of
transaction that invokes smart contract functions: it either completes or completely reverts. Over the years
more and more blockchains such as Polkadot, Solana, Avalanche, and Cosmos have arisen and support
nearly Turing-complete smart contracts.

2.3. Emergence and challenges of multi-chain

While some people tend to favor one chain to rule them all, the reality is that blockchain technology and
markets are evolving at an astonishing pace and it is becoming more and more apparent that the future of
the ecosystem will be comprised of multiple blockchains serving their own purpose with their own



tradeoffs in terms of security, decentralization, scalability, speed, cost, compliance, and so on. In this

multi-chain future, a key limitation is that blockchains are designed to be a closed system. Transactions

that happen on a blockchain can only rely on the state of their respective blockchain, and can only modify
the state of their respective blockchain. External information cannot be reliably brought to the blockchain

without a trusted third party (oracle). Transactions that involve multiple blockchains must go through a

trusted party, such as a centralized exchange. As a result, there is currently no decentralized,

permissionless, and public service that facilitates generic atomic transactions (not only atomic swapping,
but also arbitrary logic) that involves multiple blockchains.

Popular cross-chain or cross-blockchain strategies include side-chains, relays, notary schemes, hash
time-lock contracts, and blockchains of blockchains.

First, side-chains/relays are popular solutions to implement bridges that primarily enable portable
assets. In these, some assets have a home ledger that is authoritative on its ownership, but through
bridges one can move the asset to other blockchains while being confident that the asset is able to
move back to the home blockchain. Relay is one of the direct mechanisms to facilitate
interoperability, where instead of relying on a trusted intermediary to provide information on
chain A to chain B, chain B implements a thin client of chain A using smart contracts, and is able
verify whether a particular event, transaction, or state at certain point in time has occurred on
chain A. This is often called trustless because there is no additional trust assumption beyond
trusting the two involved chains. In other words, no trust is required on the validity of the delivery
mechanism of messages from chain A to chain B, other than that the message is delivered and
delivered in time. Examples of relays include the BTCRelay on Ethereum (a SPV client of
Bitcoin) and the Rainbow bridge of Ethereum on the NEAR blockchain. Relays are also popular
mechanisms for side-chains.

Second, notary schemes are mechanisms where a trusted entity (or a set of) is tasked with
notarizing claims such as “event X has happened on blockchain A”. The most obvious notary
schemes are centralized exchanges, which are trusted entities to facilitate cross-blockchain
exchanges of coins. Notary schemes do not have to be centralized; for example the Interledger
project, in its “atomic mode” can be categorized as a decentralized, byzantine fault tolerant notary
scheme to facilitate cross-ledger transfers. Note that notary schemes are the most flexible in terms
of interoperability use cases, because they are able to act with arbitrary logic in response to events
on discrete blockchains. Another notable decentralized notary scheme is THORChain which
implements a DEX for native coins across several different chains, using a set of incentivized
validators as notaries.

Third, hash time-lock contracts (HTLC) are constructs of smart contracts that can facilitate
atomic swaps across blockchain chains trustlessly without additional trust beyond the
participating two blockchains. The key words are “atomic” and “trustless”. Atomic means that the
transactions (involving two parties) are either complete or revert (as if nothing has happened).
Trustless means no third-party needs to be trusted for the atomic swap. It works roughly by two
parties interactively deploying and interacting with smart contracts on both sides. The core idea is
with a hash of secret that is conceived by party A and used by both parties, and party A is forced
to reveal the secret when claiming party B's coin, which can then be used by party B to claim
party A's coin. Examples of HTLC include XClaim BTC/Ethereum or BTC/Polkadot bridge, and
the Lightning Network on Bitcoin.



e Fourth, blockchains of blockchains (BoB) are frameworks that provide data, network, consensus,
incentive, and contract layers for constructing application-specific blockchains that interoperate
between each other. Note that BoB does not solve current interoperability problems directly.
Rather it enables the creation of new interoperable blockchains. To connect to “legacy” chains,
some sort of bridge or other mechanism shown above must be employed. Important examples of
BoB are Polkadot and Cosmos, built on Substrate and Tendermint as consensus engines, and
XCMP and IBC as cross-chain communication protocols.

Strategy Use scenarios Trust Assumption
Relay/Side-chain Portable Assets Trustless
Notary Scheme Arbitrary Trustful
HTLC Atomic Swaps Trustless
BoB New blockchains Trustless/Trustful

Table 1. Comparison of existing cross-chain strategies

Each of these broad strategies has its strengths and weaknesses in technical complexity, trust assumptions,
level of interoperability, and use cases. Our discussion here is brief and incomplete, but still we can very
roughly categorize the characteristics of these strategies; see Table 1 for a comparison of these strategies.

3. Interoperability Related Work

In this section, we pick some of the recent and most relevant projects, ideas, and trends to provide context
for this paper and ZetaChain. For more academic cross-blockchain research please refer to a
comprehensive survey [1].

3.1. Cross-chain Communication

A basic building block of any cross-blockchain interoperability is the ability to communicate and prove to
chain B that a certain transaction happened on chain A.

BTCRelay [4], Rainbow Bridge [5]: Consider the task of building a one-way bridge on Ethereum from
Bitcoin. When a user on Bitcoin sends 1 BTC to a given custody address, one wrapped BTC is issued on



Ethereum. To do this in a trustless way, a smart contract on Ethereum can verify the transaction on
Bitcoin, and issue a corresponding wrapped BTC coin on Ethereum. BTCRelay is such an example. For
an Ethereum smart contract to verify the transaction on Bitcoin, someone (off-chain service) can submit
the transaction, together with the transaction Merkle proof. The Ethereum smart contract verifies the
proof based on the chain of block headers stored in the smart contract. This smart contract is essentially a
light client of Bitcoin. Even though the strength of the proof is a bit lower than a full node (would be
vulnerable to certain 51% attacks), this kind of bridge is strong and trustless, albeit rather expensive to
operate because the chain of the block headers have to be constantly updated in the smart contract. The
Rainbow Bridge is also a good example of a trustless bridge, between Ethereum and NEAR.

Wormbhole [17]: Wormhole is also a cross-chain message delivery service, but it's not trustless. Rather, it
depends on a set of validator nodes to attest the validity of the message delivered. Consider the same task
of building a one-way bridge on Ethereum from Solana. When a user sends 1 SOL to a certain custody
address, one wrapped SOL is issued on Ethereum. The Ethereum smart contract does not verify the
transaction on Solana in order to issue the wrapped coin; it trusts that the super majority of the set of
Wormhole validators are honest and correct. The security of Wormhole relies on the super-majority of the
validators being honest. It appears that Wormhole relies on reputations of validators to build trust.

LayerZero [13]: LayerZero is a communication layer for facilitating cross-chain message delivery. It's
essentially a weaker form of Relay (see introduction about Relay). The idea is to enable Chain B to verify
that a given transaction or event has happened on Chain A. If Chain B supports general smart contracts, a
light client of chain A can be implemented in a smart contract so as to verify information about Chain A
in a trustless manner. However, even a light client can be expensive to run in a smart contract, both in
terms of computation and storage; for example the BTCRelay on Ethereum appears to be discontinued.
LayerZero reduces these costs with an ultra-light client on smart contract which does not report and store
the whole chain of block headers (or a significant part of it). Rather, LayerZero relies on trusting a block
header without a chain of block headers that can trace back to some known trusted block. The key
assumption of the security of LayerZero is that the two parties—Relayer, who provides proof of
transaction, and Oracle, who provides the block header—are non-colluding. In our terminology and
categorization, LayerZero is not “trustless” due to the trust needed for the independence of the two
parties. We use a stricter definition of trustless as where the validity (not necessarily liveness, censorship
resistance) of messages does not depend on trust in anything other than the two participating blockchains.
If the relayer and oracle collude, they can defraud LayerZero by making up an invalid block header (costs
about 2 Ether to compute PoW nonce which is the coinbase reward of each block), and make chain B
believe that a non-existent transaction has happened on chain A. LayerZero essentially outsources its
security to third-party relayer and oracle.

Axelar [19]: Similar to LayerZero, Axelar provides a message passing protocol for building cross-chain
smart contract apps. Axelar connects to 81 chains including heterogeneous smart contract platforms
including Solana (SVM), Osmosis (Cosmos IBC), although it cannot connect to non smart contract chains
directly such as Bitcoin and Dogecoin. The cross-chain message passing appears to be decentralized;
there are a set of validators or observers that observe certain smart contracts on connected chains and
forward its message to another smart contract on possibly another chain, by initiating a smart contract call
there with the message included. Axelar also has its own L1 blockchain but it seems the programmability
of the blockchain (its WASM smart contract platform) is not needed for cross-chain message passing.



IBC [10]: Inter-Blockchain Communication (IBC) protocol is a TCP/IP-like protocol for communication
between sovereign blockchains. IBC is an end-to-end, connection oriented, stateful protocol between
blockchains. Practically, IBC usually requires fast finality chains such as CometBFT, and the blockchain
must support IBC protocol such as Cosmos SDK-built chains. For the blockchains that support IBC, they
can establish connections, and through these connections one blockchain can verify proofs against the
consensus states of another blockchain. Each blockchain that supports IBC must run a light client that is
capable of verifying proofs on the other blockchain in order for them to be connected. The IBC module
must also handle production of proofs, and a separate process (relayer) must relay the packet and proof to
the counterparty chain. Among the blockchains that support IBC, very strong interoperability can be
established, such as coin transfer, atomic swaps, cross-chain decentralized exchanges, and even
cross-chain smart contracts. The major drawback of IBC is that it requires adoption—which is a lot to ask
of other blockchains, and also might not be possible for legacy blockchains.

Intent [20] based cross-chain solutions: e.g., Across Protocol. Intents are a relatively new mechanism for
conducting cross-chain transactions with hybrid on-chain and off-chain components. Users interact with
contracts that conform to the Intent EIP [20] and “fulfillers”, i.e., third parties compete to fulfill the order
for a fee. The cross-chain orders can be bridging some token to another blockchain, or they could be a
swap order that results in a different token on a different chain. Note that the Intents themselves do not
specify a particular way to complete the cross-chain transaction (bridging or swap), rather it specifies a
unified and unambiguous way for contracts and users to signal the “intent” to trade and leave the
fulfillment of the trade up to mostly private market makers. Intents are descriptive protocols for a subset
of cross-chain transactions.

3.2. Cross-blockchain Asset Transfer

Hop [9]: Hop is a protocol to send coins across rollups and their underlying L.1 in a trustless manner.
Rollups are by default siloed systems and the asset transfer between rollups and L1 can be slow and
expensive. For example, optimistic rollups usually take a week to exit into L1; on the other hand,
zk-rollups can instantly validate exit but it involves high computation which is expensive on L1. Hop
solves the problem of moving coins across rollups by creating bridges and bridge coins, and uses AMM
markets to exchange coins rather than sending coins directly. Specifically, Hop creates bridge coins for
each rollup, and the bridge coins can be moved around in batches so as to decrease the cost. The bridge
coin acts as an intermediary asset in transferring a coin on rollup A to rollup B. Hop uses the existing
rollup bridges to do cross-rollup transactions so it does not need a separate off-chain service.

Connext [3]: Connext is a trust-minimized solution for cross-chain asset swaps. The idea is somewhat like
generalized atomic-swaps, using Hash Time Locked Contracts (HTLC) to ensure transaction atomicity. It
uses a network of off-chain routers to create a market and AMM style pricing mechanism. The safety of
user funds do not depend on third-parties, only the liveness of the system does. Compared to Hop,
Connext uses off-chain services and therefore can connect beyond rollups on a single L1; compared to
externally verified solutions, Connext is application specific and not general purpose. For example, it
cannot be adapted to send arbitrary messages or cross chain contract calls.

THORChain [15], Chainflip [16]: THORChain (along with similarly built competitors like Chainflip) is a
decentralized liquidity network that facilitates AMM style native L1 coins on different blockchains,



including Bitcoin, Litecoin, Bitcoin Cash, Ethereum. Notably, THORChain is not, strictly speaking, a
bridge, as it does not lock & wrap coins and transact on wrapped coins. Rather, THORChain is an
application-specific blockchain that maintains the pool, logic, and management of vaults on different
chains for swapping. THORChain distributes the signing key using the GG20 TSS scheme and has its
own implementation based on Binance's TSS library. ZetaChain is in-part inspired by the design of
THORChain, and can be thought of as a simpler and more generalized platform which enables not only
swapping, but a generic smart contract platform that allows arbitrary cross-chain applications to be built
easily. For example, developers can implement similar functionality to THORChain as a smart contract on
ZetaChain.

Synapse [14]: According to public information, Synapse is supposed to be an externally verified validator
set based system for cross-chain swaps. It issues AMM smart contracts on external chains, and some
composite stablecoin as an intermediary asset to cross-chain. To move the intermediary stablecoins across
chains it appears to use a burn and mint strategy. Detailed public information about their validator
mechanism is not available at the time of writing this paper.

CCTP by Circle (https://developers.circle.com/cctp): The Cross-Chain Transfer Protocol (CCTP) v1/v2
by circle (the issuer of USDC stablecoin) is a cross-chain asset transfer protocol, with message passing
authenticated and facilitated centrally by Circle service provider. It’s similar to LayerZero, Wormwhole,
or Axelar with USDC attached to every cross-chain messaging. The difference is that CCTP is not

decentralized; only that its interfaces on multi-blockchains are contract calls.

3.3. Cross-blockchain Smart Contract

Quant Network [18]: Functionality-wise, the Quant network and its Overledger [18] is the closest to
ZetaChain. The Quant network is a centralized service that provides a standardized web-service-based
access to the connected public or private blockchains, or regional legacy database ledgers. It supports
general programmability triggered by events on those blockchains (transaction to/from a given address,
smart contract interaction, events, state changes, etc.), via popular languages and frameworks such as
Javascript, Java, Python, etc. ZetaChain aims to achieve similar general programmability, but with an
incentivized public blockchain, with far reduced trust assumptions, more transparency, complete
verifiability and auditability.

ICP/Chain-Key [2]: The Internet Computer Protocol (ICP) has proposals to enable interoperability to the
Bitcoin network via its Chain-Key technology, which is similar to the distributed threshold signature
scheme. With Chain Key, ICP in principle can custody funds on the Bitcoin network. It's unclear how ICP
observes the Bitcoin network, and how their smart contract platform interacts with external blockchains.

HyperService [11]: HyperService proposes a cross-chain smart contract platform that is chain agnostic. It
consists of two components: a high level language HSL to describe a cross-chain dApp, and an execution
layer that ensures financially atomic transactions.

3.4. Blockchain of Blockchains (BoB)


https://developers.circle.com/cctp

The most prominent BoBs are Cosmos and Polkadot. BoBs are usually frameworks that aim at tight
interoperable application-specific blockchains. Polkadot, for example, provides a relay chain which
handles all consensus, and Parachains which can be different blockchains with different state-transition
functions. The Parachains are tightly integrated and can interoperate seamlessly via the relay-chain.

The Cosmos ecosystem, on the other hand, does not share consensus, so the interoperability between
Cosmos chains is less tight. Every Cosmos chain is sovereign with their own choice of consensus
(typically CometBFT-based fast finality). The Cosmos ecosystem relies on the IBC protocol (see section
3.1), and special blockchains called Hubs to facilitate cross-chain asset transfers, and even cross-chain
smart contracts.

To enjoy interoperability in Cosmos or Polkadot, the blockchains typically need to be built on some
common ground. Legacy blockchains, or new blockchains with their own consensus, cannot be part of
BoBs.

4. ZetaChain Blockchain Architecture

4.1. Overview

At a high level, ZetaChain is a Proof of Stake (PoS) blockchain built on the Cosmos SDK and CometBFT
Tendermint PBFT consensus engine. As a result, ZetaChain enjoys fast block time (~4s) and instant
finality (no block confirmation needed, no re-organization allowed). The CometBFT Tendermint
consensus engine has been demonstrated to scale to ~300 nodes in production, and with future upgrades
with BLS threshold signatures the number can potentially increase to 1000+. The throughput of
transactions of the CometBFT Tendermint consensus engine that ZetaChain uses can reach 4000+
transactions per second (TPS) under ideal network conditions [10]. Note that the cross-chain TPS cannot
reach nearly as high because cross-chain transactions latency/throughput may be limited by external chain
latency/throughput, TSS key-sign throughput, and various other factors such as external node RPC speed,
etc.

The ZetaChain architecture consists of a distributed network of nodes, often referred to as validators.
Validators act as decentralized observers that can reach consensus on relevant external state and events,
and can also update external chain state via distributed key signing. ZetaChain accomplishes these
functions in a decentralized (without a single point of failure, trustless, permissionless), transparent, and
efficient way. Contained within each validator is the ZetaCore and ZetaClient. ZetaCore is responsible for
producing the blockchain and maintaining the replicated state machine. ZetaClient is responsible for
observing events on external chains and signing outbound transactions. ZetaCore and ZetaClient are
bundled together and run by node operators. Anyone can become a node operator to participate in
validation provided that enough bonds are staked. See Figure 2 for a high level illustration.

Validators: ZetaChain uses the CometBFT Tendermint consensus protocol which is a partially
synchronous Byzantine Fault Tolerant (BFT) consensus algorithm. Each validator node can vote on block
proposals with voting power proportional to the staking coins (ZETA) bonded. Each validator is identified
by its consensus public key. Validators need to be online all the time, ready to participate in the constantly



growing block production. In exchange for their service, validators will receive block rewards, and
potentially other rewards such as gas fees or processing fees, proportional to their bonded staking coins.

Observers: Another set of important participants of ZetaChain consensus are the observers who reach
consensus on external chain events and states. The observers watch externally connected chains for
certain relevant transactions/events/states at particular addresses via their full nodes of external chains.
The observers can be further divided into two roles: sequencer and verifier. The sequencer discovers
relevant external transactions/events/states and reports to verifiers; the verifiers verify and vote on
ZetaChain to reach consensus. The system requires at least one sequencer and multiple verifiers. The
sequencer does not need to be trusted, but at least one honest sequencer is needed for liveness.

Signers: The ZetaChain collectively holds standard ECDSA/EdDSA keys for authenticated interaction
with external chains. The keys are distributed among multiple signers in such a way that only a super
majority of them can sign on behalf of the ZetaChain. It’s important to ensure that at no time is any single
entity or small fraction of nodes able to sign messages on behalf of ZetaChain on external chains. The
ZetaChain system uses bonded stakes and positive/negative incentives to ensure economic safety.

In practice, all above roles (except sequencer) are collocated in the same computer node, sharing software
and credentials such as validator keys and bonded stakes and the associated rewards/slashing. ZetaChain
is planned to transition from Proof-of-Authority at first to a fully delegated Proof-of-Stake (DPoS) model
over time, and gradually delegate the governance of the blockchain to ZETA coin holders via on-chain
voting.
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Figure 2. ZetaChain High Level Architecture.

4.2. Observers

Observers are tasked with monitoring external chains for relevant transactions. Observers are continually
scanning for external chain events responsible for both burning and minting the native coin (ZETA),
messages & smart contract calls, as well as other events that dApps register on ZetaChain. Each observer
independently observes using its own full node of external chains, and all the observations must reach
consensus on the ZetaChain before being considered finalized. Once events are finalized, it automatically
triggers an execution of ZetaChain logic, which can be defined as a custom Cosmos SDK module, or
ZetaChain native smart contract.

There are two modes of observation: Active and Passive mode. Active observation constantly scans the
external blockchains for relevant transactions/events/states. Passive mode relies on a sequencer (or a
small set thereof) to scan and report transactions/events, together with Merkle proof. The observers verify
the proof and reach consensus on the verification on-chain. The active mode has the advantage of being
always live and censorship-resistant due to decentralization, but the cost of each node is high because it
needs full nodes (of external chains) for the scanning. Passive mode is much less costly, as verification
can be done with a light client. Only one or a few sequencers need access to a full node, which is much
cheaper and makes scaling to multiple external chains and more validator nodes much easier. The
disadvantage of passive mode is that the liveness of external chain inbound observation is dependent on
the sequencer, and also subject to censorship by the sequencer. This is the same situation as the optimistic
rollup where the liveness of the rollup is dependent on a sequencer. To mitigate this, everyone is able to
be a sequencer if they so choose, and a sequencer can be incentivized by the creation of a competitive
market. In particular, dApps have a vested interest in running a sequencer. Another advantage of running
passive observation mode with a sequencer is that the dApps are in control of the observation ordering.
For efficiency reasons, the active mode does not enforce observation ordering, but if the observation
ordering is important to a dApp, it can opt to run its own sequencer in synchronous observation mode (i.
e. wait for each observation to be finalized by ZetaChain before moving on to the next).

4.3. Multi-party Threshold Signature Scheme

ZetaChain needs to hold an account on external chains in order to custody funds on that chain (manage a
pool, vault, etc.), and to perform privileged actions (burn, mint, move funds out of the vault, etc.). This is
required for general-purpose cross-chain smart contracts, as a core feature of smart contracts is to manage
assets autonomously. On Ethereum for example, a smart contract has an address and can hold any asset
like an External Owned Address (EOA, normal user account). This ability enables many powerful
applications such as AMM pools, lending/borrowing pools, etc., where users pool their assets and let
smart contracts manage them according to a smart contract’s predetermined rules. In order to hold an
account, ZetaChain needs to have a private key. To avoid a single point of failure (single location of the
private key, single dealer in generating the key), ZetaChain needs a distributed threshold signature
scheme.

This is also needed to support non-smart-contract chains such as Bitcoin, Dogecoin, or smart-contract
platforms that are expensive to verify multi-sig. To avoid any single point of failure, ZetaChain uses



state-of-the-art multi-party threshold signature scheme (TSS) [7, 8] based on implementations from
THORChain TSS [15] and Binance tss-lib [12]. To the outside world, the ZetaChain validators
collectively possess a single ECDSA/EdDSA private key, public key, and address, and the signature
signed by ZetaChain can be verified efficiently and natively by standard ECDSA/EdDSA verification
procedure by the connected blockchains. Internally, the private key is generated without a dealer, and the
private key is distributed in all the validators. At no time is a single entity or a minority of validators able
to piece together the private key and sign messages on behalf of the whole network. The key generation
and signing procedures are done by Multi-Party Computation (MPC) which reveal no secret of any
participating node. Because ZetaChain can hold a TSS key and address, ZetaChain can support smart
contracts that can manage native vaults/pools on connected chains including Bitcoin. This effectively
adds smart contract capabilities to the Bitcoin network, and potentially other non-smart contract
blockchains. The TSS employed by ZetaChain gives the performance and convenience of hot wallet with
cold wallet level security. See Figure 3 for an illustration.
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Figure 3. Leaderless TSS Keygen and Keysign Overview

To sign in a decentralized manner, ZetaChain employs a multi-party -threshold ECDSA scheme based on
[7, 8]. This leaderless Threshold Signature Scheme (TSS) performs key generation and signing in a
distributed fashion. That is, no single validator or outside actor has access to the complete private key at
any point in time, and no private information is leaked in key generation or signing. For efficiency,
ZetaChain employs batched signing and parallel signing to improve signers throughput.

4.4. Cross-Chain Smart Contracts and Zeta Virtual Machine



The ZetaChain hosts an Ethereum Virtual Machine (EVM) compatible execution layer called ZetaChain
EVM. Aside from supporting all features of EVM and normal interactions with EVM (contract creation,
contract interaction, composition of contracts, etc), the distinguishing feature of ZetaChain EVM is that

e contracts on ZetaChain EVM can be called from external chains
e contracts on ZetaChain EVM can generate outbound transaction on external chains

These two additional features make the ZetaChain EVM a general purpose programmable platform that
supports cross-chain transactions that alter states in different chains atomically and in a single step.

4.4.1. Challenges in General Purpose Cross-Chain Transaction

There are two key challenges in designing a general-purpose cross-chain transaction platform: asynchrony
and atomicity.

The first challenge is that communication between chains is necessarily via message passing and
inherently asynchronous between heterogeneous chains. This means unlike smart contracts on a single
chain (such as EVM), querying or changing the state of another chain is asynchronous. This precludes the
common convenient synchronous function calls from cross-chain smart contracts. The cross-chain smart
contract programming model thus is best considered as a finite state machine, where state change is
triggered by the messages (observations) from external chains. The app contract thus will be structured as
a distributed event-driven state machine triggered by messages. This is quite a more complicated
programming model from the synchronous model of single chain smart contract.

The second challenge is the atomicity of cross-chain transactions. As cross-chain transactions involve
altering states on multiple chains, if one part of the state change fails, all previous state changes need to be
reverted. Blockchains reverts are powerful mechanisms to maintain atomicity, but no blockchain is built
with consideration such that revert is conditional on what happened on another blockchain. To maintain
cross-chain transaction atomicity, any cross-chain solution must adequately handle reverts, otherwise
cross-chain applications will be too onerous to reason about and build.

In this paper we explore a viewpoint of hybrid UTXO and account-based approach, playing to the
strengths of each. Essentially, we use UTXO to represent and track external blockchain transactions, and
use account-based smart contracts for logic and managing shared global states. We treat observed external
events as a “synthetic” UTXO. A UTXO includes the amount of ZETA coin (burned), amount of another
coin (optional, for example, BTC on the Bitcoin network where it's impossible to issue ZETA coin), and a
script msg (roughly equivalent to a message or function call on Ethereum). The smart contract on
ZetaChain runs the msg and generates an Event that tries to “spend” the UTXO on ZetaChain. The Event
is then picked up by ZetaClient signers and they will sign a transaction to an external chain. The
ZetaChain Virtual Machine and ZetaClient will validate certain invariants, one of which is that the output
ZETA must be equal to the input ZETA in the UTXO. Once the outbound transaction is confirmed and
observed, the UTXO is marked as “spent” and deleted from the state machine. If the outbound transaction
fails (insufficient gas, etc.), the UTXO is marked as “revert” and refunds of ZETA and/or associated coins
are refunded on the source chain. When the refund is confirmed then the UTXO is deleted from the state
machine. See Figure 4 for an illustration.



We use the synthetic UTXO model for its accountability, simplicity, and scalability while avoiding the
key limitation of UTXO which is the expressiveness of its scripting, and awkwardness in certain

important applications (one TX per block in AMM).
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Figure 4. Hybrid UTXO-account flow.

4.4.2. Universal Smart Contract

ZetaChain introduces Universal Smart Contracts, a more efficient alternative to typical cross-chain
messaging (CCMP) protocols. This model simplifies development by centralizing application logic and
state into a single contract on ZetaChain's EVM. This avoids the expense, latency, and complexity of
synchronizing state across distributed contracts on multiple chains, a common issue with CCMP that also
complicates handling reverts and precludes chains without smart contracts (like Bitcoin).

A universal smart contract is a ZetaChain EVM contract that can:

be arbitrarily programmed.

directly control assets on external chains.

be called from external chains.

call contracts and transfer assets to external chains.

Foreign assets like ETH, BTC, or USDC are controlled by ZetaChain's TSS address on external chains



and are represented on ZetaChain EVM as ZRC-20 tokens. Any ZetaChain EVM contract can achieve
universal functionality by implementing the UniversalContract interface and interacting with ZRC-20s.

interface UniversalContract ({
function onCall (
MessageContext calldata context,
address zrc20,
uint256 amount,
bytes calldata message
) external;

1. Calling a Universal Smart Contract from External Chains

An inbound call is initiated when a user sends assets to a Gateway Contract (or TSS address on a non
smart contract chain like Bitcoin) on an external chain with a memo specifying the destination ZetaChain
EVM contract and a message. ZetaChain's network observes this transaction and invokes the onCall
function on the specified contract, populating it with the context of the call (origin chain, sender), the
ZRC-20 address of the asset, the amount, and the message. The contract then executes its logic. If the
ZetaChain EVM execution reverts, the protocol automatically creates a transaction to refund the user.

2. Calling an External Chain Smart Contract from a ZetaChain EVM Contract

ZetaChain EVM contracts can initiate outbound transactions—both asset transfers and arbitrary function
calls—through the Gateway ZetaChain EVM contract. This enables two-way communication and
orchestration of multi-chain logic.

// A simplified interface for ZetaChain's Gateway on zEVM
interface IGatewayZEVM ({

function call(...) external;
function withdraw(...) external;
function withdrawAndCall(...) external;

To make an outbound call, the ZetaChain EVM contract must pay the destination chain's gas fee using
the corresponding gas ZRC-20 token. The process involves calculating the fee, transferring it from the
user, approving the Gateway, and invoking the appropriate Gateway function (call, withdraw, or
withdrawAndCall).

// Sample zEVM function to call an external contract
function callExternalContract (
bytes memory receiver, // External contract address
address gaszRC20, // Destination chain's gas ZRC-20
bytes calldata message // Encoded external function call
) external {
// 1. Calculate gas fee for the outbound transaction.



uint256 gasLimit = 100000;
(, uint256 gasFee) = IZRC20 (gasZRC20).withdrawGasFeeWithGasLimit (gasLimit) ;

// 2. Collect gas fee from the user and approve the Gateway.
require (IZRC20 (gasZRC20) .transferFrom (msg.sender, address(this), gasFee));
IZRC20 (gasZRC20) .approve (address (gateway), gasFee);

// 3. Execute the cross-chain call via the Gateway.
gateway.call (

receiver,

gaszZRC20,

message,

CallOptions ({gasLimit: gasLimit, isArbitraryCall: true}),
RevertOptions ({revertAddress: address(this), ...})

ZetaChain provides robust revert handling. If an outbound call fails, the protocol automatically triggers an
onRevert function on a developer-specified contract, allowing for graceful error handling and fund
recovery.

3. Example: Cross-Chain Swap Application

A cross-chain swap application demonstrates this model's power, enabling a user to exchange Token A on
Chain X for Token B on Chain Y in a single transaction, with all logic managed by one ZetaChain EVM
contract.

Handling Inbound Swaps (onCall)

The onCall function serves as the entry point, triggered by a user's deposit on a connected chain. It
decodes the user's intent, executes the swap logic, and initiates the outbound transfer.

// Entry point for incoming cross-chain transactions
function onCall (
MessageContext calldata context,
address inputZRC20,
uint256 amount,
bytes calldata message // Contains target token and recipient
) external override onlyGateway ({
// 1. Decode message to get the target token and recipient.
(address targetzZRC20, bytes memory recipient, ...) = abi.decode (message,

)i
// 2. Swap input token for the target token and for gas on zEVM.
(uint256 outputAmount, address gaszZRC20, uint256 gasFee) =
handleGasAndSwap (...);

// 3. Initiate the outbound transfer of swapped tokens.



withdraw (recipient, outputAmount, targetZRC20, gasZRC20, gasFee);

Executing the Outbound Transfer (withdraw)

After the swap on ZetaChain EVM, the withdraw function sends the resulting tokens to the recipient on
the destination chain by calling the Gateway.

// Sends swapped tokens to the destination chain
function withdraw (
bytes memory recipient,
uint256 outputAmount,
address targetZRC20,
address gasZRC20,
uint256 gasFee
) internal {
// 1. BApprove the Gateway to spend the gas and target tokens.
IZRC20 (gasZRC20) .approve (address (gateway), gasFee);
IZRC20 (targetZRC20) .approve (address (gateway), outputAmount) ;

// 2. Call the Gateway to withdraw tokens to the recipient.
gateway.withdraw (

recipient,

outputAmount,

targetZRC20,

RevertOptions ({revertAddress: address(this), ...})

This illustrates how the universal model centralizes logic, freeing the developer from managing
multi-chain deployments and low-level messaging, while the ZetaChain protocol handles the underlying
complexity.

Note 1: Contracts that don't need to be called from external chains need not implement the
UniversalContract interface.

Note 2: The capabilities of universal contracts are dependent on the available primitives, like the ZRC-20
standard for fungible tokens.

Note 3: Deploying logic and state to a single contract on ZetaChain EVM, with protocol-handled reverts,
makes building universal dApps significantly easier than message-passing alternatives.

Note 4: This architecture supports non-smart contract chains like Bitcoin, as no contracts need to be
deployed on the external chains.



4.4.3. Universal Smart Contracts vs. Messaging

While both mechanisms can support many types of applications, they offer fairly significant differences in
the architecture those applications would adopt.

More complicated dApps may prefer Universal Smart Contracts because the logic & state is in a single
place, whereas with messaging, you must broadcast messages and state sync across many contracts on
different chains, which can lead to more attack surface and more gas fees (each message requires
additional gas to be paid, and the number of messages you must send to maintain a full state sync scales).
In other words, Universal Smart Contracts behave, for developers, as if all assets were on one chain (see
Figure 5).

EOA/Contract on Chain B

ZetaChain’s EVM Smart Contract

EOA/Contracton ChaihnA ——— Assets from any chain (ZRC-20) ———— EOA/Contract on Chain C
Application State

EOA/Contract on Chain D

Figure 5. Universal smart contract-based application. Note that there is a single contract that receives
input, writes output, maintains state, and orchestrates external assets for the application. The number of
external transactions required for a Universal dApp increases only based on the required outbound
transactions, like withdrawing assets to an external chain's address

Common applications like Uniswap V2/V3, Curve, Aave, Compound, and so on that have been audited
and battle-tested on Ethereum/EVM can easily be deployed and built on top of in ZetaChain's Universal
Smart Contracts. One can extend these applications by adding in compatibility with ZRC-20, but those
changes are minimal and the majority of logic may remain the same, and users may interact with these
applications in single-step transactions just as they would on Ethereum (or by calling them from external
chains). On the other hand, with messaging, in many situations (especially those that are more complex),



a developer must recreate the logic in a completely different, asynchronous messaging and state-sync
system; messaging cannot leverage existing work in the same way.

ZRC-20 can easily support Bitcoin/Cardano/XRP which do not have capability or efficiency to support
general purpose smart contracts for applications like swapping, lending, etc. Messaging cannot work for
these chains, because messaging requires smart contracts on any connected chain.
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Figure 6. Messaging-based application. Note that for contracts to stay in sync across connected chains,
the number of messages required increases exponentially with the number of chains involved.

Messaging generally makes sense in simpler use cases between 2 or just a few chains, or where state
should heavily be based in one chain, and sent or interacted with from other chains. Application-specific
bridges, for example, where the goal is simply to get data/value into one chain, could make sense to build
with messaging. Applications that must utilize contracts on external chains may also need a
messaging-based component. For more complex applications, the number of messages (and thus
gas/transactions) required to synchronize state across multiple chains can increase exponentially with the
number of chains involved (see Figure 6). For example, managing a vault or lending protocol with assets
across many chains could be difficult to manage with just messaging.

Message passing style logic and state are distributed on asynchronous chains which adds significant
complexity to maintaining cross-chain transaction atomicity, and forces dApps to program in an event
(message) driven way that is generally harder to do than synchronously in a single chain. Universal smart



contracts on the other hand offer the novel ability to develop multichain applications in a more
synchronous, atomic environment as if they were on one chain.

4.4.4. Fees & Gas

To prevent spam and ensure fair and efficient use of the blockchain resources (compute and storage), the
user must pay proper fees for processing the cross-chain transaction.

Unlike transactions on a single chain, a cross-chain transaction naturally might involve several different
gas assets and need to pay more than one type of tokens for gas fees. This is rather inconvenient, and may
add undue operational cost or risk to operate the cross-chain solution. For example, if one invokes a
contract on Ethereum from BSC chain, the user needs to pay both BNB and Ether as gas fees; but how
can the user pay Ether on BNB? Do they need to acquire “wrapped” Ether on BSC? Which version of the
wrapped Ether? Who wraps and unwraps the Ether?

Alternatively, one might just ask the user to pay in a single asset (for example, only BNB), and then some
off-chain service converts the BNB into Ether to reimburse the protocol which needs to pay Ether for the
outbound tx processing. This is quite an operational burden, and runs counter to the autonomous nature of
sovereign blockchain that does not need centralized operator.

ZetaChain completely automates the gas handling and conversion on-chain, and with market force to
maintain proper conversion rate. Also, the conversion of different gas assets are synchronous with the
CCTX itself so the settlement is as fast as possible. The way ZetaChain does it is to rely on ZRC20 and
their AMM pools on ZetaChain EVM (currently Uniswap v2 pools). All gas assets have a corresponding
ZRC20 which pairs with ZETA (native gas token on ZetaChain EVM) on ZetaChain EVM.

Let us consider the two cases when the user needs to pay gas fees in coins they might not have:

e In message passing, the user pays a single asset (ZETA token) for all gas fees. The ZetaChain
protocol converts proper amounts of ZETA into outbound chain gas asset ZRC20 synchronously
and use the balance to pay outbound transaction gas fees.

e In universal smart contract ZRC20, when a user (or a smart contract) wishes to withdraw the
foreign asset, the user will need to pay the outbound gas fee. The withdrawing smart contract can
acquire the outbound chain gas asset ZRC20 from the internal AMM pools on ZetaChain EVM to
pay gas synchronously.

In either case, the multi-gas handling of ZetaChain is sound (which means that the protocol always has
enough gas asset to pay outbound tx gas fees), and the conversion rate is determined by market force. As
ZetaChain EVM ZRC20 assets are easily withdrawn to external chain with on-chain contracts, the
markets on ZetaChain EVM are connected with other markets therefore we can expect market forces to
maintain price parities.

5. Use Cases & Applications



In this section we discuss some sample applications of ZetaChain. These examples are not anywhere near
comprehensive, since the general smart contract and interoperability capabilities of ZetaChain provide a
platform for virtually unlimited creativity in terms of universal application-building.

5.1. Smart Contract Managed External Assets

A powerful feature of smart contracts is that smart contracts can hold any assets that a normal account can
hold, and are able to receive and spend that asset according to programmed logic. However, important
blockchains like Bitcoin, Dogecoin, Monero, etc., do not have general enough smart contract capability to
support useful applications such as AMM exchanges, collateralized borrowing/lending markets with
pools, and the like. There is currently no way to involve native Bitcoin (without wrapping) in arbitrary
logic in a decentralized and permissionless manner. The cross-chain smart contract capability of
ZetaChain can hold and use assets on external chains directly, therefore enabling smart contract managed
native Bitcoin on ZetaChain, among other native assets such as ETH, ERC20, Algorand ASAs, etc.
Furthermore, through ZetaChain smart contracts and with message passing, cross-chain dApps can be
easily composed with smart contracts on the participating chains, with ZetaChain smart contracts
managing native Bitcoin vaults.

Let us look at an example in some detail. The mechanism for ZetaChain smart contracts to manage BTC
on Bitcoin is as follows. The initialization of smart contract requests KeyGen to generate a TSS key which
acts as the address of a Bitcoin vault. The ZetaClient will monitor the TSS address and upon identifying
incoming transactions to the TSS vault, it parses the data from the Bitcoin transaction in OP_RETURN
and invokes the zetaProcess function with the parsed data on the smart contract. The smart contract
takes actions accordingly (such as credit to certain accounts, sending out another asset according to AMM
pricing, etc.). To send out Bitcoin from the smart contract, the smart contract emits a specific Event that
the ZetaClient will pick up and sign & broadcast to the Bitcoin network. The smart contract must also
implement a function zetaExternalTxConfirm which will be invoked when the outbound external
chain transaction is mined.

5.2. Universal Stablecoins

Stablecoins (blockchain-issued tokens pegged to real currencies) are gaining significant traction.
However, multiple issuers often issue stablecoins for the same currency (e.g., USD), and a single issuer
like Tether or Circle may issue the same stablecoin across various blockchains. Users face challenges in
selecting a blockchain for storage and then moving stablecoins to the needed chain quickly, cheaply, and
reliably.

ZetaChain enables a simple abstraction for a universal USD, backed by multiple USD stablecoins from
different blockchains, while maintaining fluidity across chains (on-demand redeemability to different
chains). This solution on ZetaChain will be fully decentralized and programmable, enhancing
transparency and trust.

One method for building a universal USD Stablecoin, backed by, for example, 16 USDC on chains X, Y,
Z, etc. (connected to ZetaChain), involves the following: First, USDC.X, USDC.Y, and USDC.Z have
their respective ZRC20 representations on ZetaChain (an ERC20-compatible token contract with



specialized input/output functionality to/from connected blockchains X, Y, Z...). A portion of USDC.X,
USDC.Y, and USDC.Z liquidity is pooled in an AMM contract like CurveStableSwapNG, optimized for
capital-efficient swaps between stable asset groups. The liquidity position (LP token) of such a pool can
serve as the unified USDC, exchangeable for any USDC.XYZ.

Furthermore, since ZRC20 contracts are natively invokable from connected blockchains, the user
experience can be improved by providing a deposit function from chains XYZ: USDC.X -> Unified
USDC in one cross-chain transaction. Similarly, ZRC20 USDC.X can be redeemed back to USDC on
chain X natively via a cross-chain transaction. Therefore, the unified USDC can represent a unified USD
coin fluid across various USDC issues on different chains (X, Y, Z...), available to users on-demand. All
infrastructure is decentralized, requiring no centralized party. See Figure 7 for an illustration.
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Figure 7. Universal stablecoin on ZetaChain. Liquidity from multiple USD-pegged assets on different
blockchains (e.g., USDC.X, USDC.Y, USDC.Z) is represented as ZRC-20 tokens and pooled in an
on-chain AMM to form a unified stablecoin on ZetaChain. This universal USD can be freely swapped or
redeemed natively to any connected chain in a single decentralized transaction.

5.3. Cross-chain AMM Exchanges

ZetaChain can enable true cross-chain AMM decentralized exchanges, built on top of smart contracts.
There are two ways of constructing an AMM DEX on ZetaChain: message passing and native ZetaChain
smart contracts. The key difference is whether the pool is managed by an external smart contract or native
ZetaChain smart contract. With message passing, the asset pool is managed by smart contracts on external



chains; with the native ZetaChain smart contract approach, the pool is managed by ZetaChain smart
contracts through a TSS account.

Specifically, in message passing, the assets are managed by smart contracts on external chains, paired
with a ZETA coin. A swap of asset X on chain A for asset Y on chain B can be accomplished by: 1) swap
X for ZETA on chain A using smart contract managed pool and AMM; 2) pass message, together with the
ZETA coin from chain A to chain B; 3) chain B smart contract managed pool (Y/ZETA) swaps ZETA
coin for Y.

With native ZetaChain smart contracts, the ZetaChain TSS account holds all the native assets on external
chains, which can be managed by ZetaChain contracts directly. The ZetaChain smart contract implements
AMM logic that determines pricing, swap, liquidity providers, and fees.

In the message passing approach, the dApp states and logic are spread across all the external chains;
ZetaChain only acts as a message verifier and relayer. The advantages in this approach is that existing
infrastructure can be reused (for example, on EVM chains Uniswap contracts can be reused to manage
pool X/ZETA), and the dApp needs only to handle the cross-chain messaging to implement conditional
execution. On the other hand, in the native ZetaChain smart contract approach, the logic and state of the
dApp lives on ZetaChain, a single platform with a unified interface to interact with external chains. The
advantages in this approach are the ease of dApp development (minimal development efforts in
accommodating new chains), and flexibility (no longer constrained to chain idiosyncrasies and
message-passing cross-chain interaction). Additional benefits are that it relies on smart contracts on
external chains minimally, so complex logic can work on not only smart-contract chains but also UTXO
chains like Bitcoin.
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Figure 8. DEX built with ZetaChain message passing. Leveraging external chain smart contract DEXs,
one can build a cross-chain swap by sending messages with ZETA.

ZetaChain

Inbound UTXO Outbound TX
Trade 1.2 ETH on Polygon for ANMDEXS I ECoraC, Send 0.09 BTC to
BTC on Bitcoin | address
S8
Polygon Address MATIC ool ETHPoot Srepect Bitcoin Address

Figure 9. DEX built with ZetaChain Smart Contracts. Since ZetaChain TSS can manage external chain
pools with its smart contracts, DEX can even support non-smart-contract chains and assets where
transactions are simple and single-step.

5.4. Cross-chain message passing with value/data

The ability to reliably and securely pass messages from one chain to another can enable powerful
cross-chain applications, even without native ZetaChain smart contracts. The message passing
functionality consists of communication endpoints on all external chains. The ZetaChain validators serve
as a Byzantine Fault Tolerant notary that attests the validity of events/transactions on chain A to chain B,
and as a relayer of messages. Chain B's smart contract only needs to whitelist the TSS address of
ZetaChain in order to trust that ZetaChain has verified the events on chain A. This allows conditional
execution on chain B's contract depending on transactions/messages from chain A, which opens a wide
range of cross-chain dApps, such as AMM DEXs, NFT, etc. (see more below). An important and
convenient feature of the ZetaChain system is that the messages can be attached with value in the form of
the ZETA coin (natively cross-chain), which considerably simplifies dApps which require moving the
value cross- chain.



The messaging service of ZetaChain consists primarily of interface contracts on the connected chains. To
access the message passing service, a dApp needs to deploy a smart contract on both the source chain and
destination chain. On the source chain, the sending smart contract can invoke a zeta.MessageSend
function with the following information: sending address, destination chain id, destination contract
address, ZETA coin to transfer, gas limit on destination chain, contract message for destination transaction
(binary or JSON encoded payload), and transaction index. The sending contract must implement a
zetaMessageRevert function, which will be called by ZetaChain when the destination message delivery
and processing of a transaction fails (for example, due to out of gas, out of funds, invalid message, etc.).
Upon failure, the ZetaChain system will refund the ZETA coin to the sending address (less gas fees), and
invoke the dApp contract zetaMessageRevert function which is supposed to revert application actions
(unlocking a locked NFT, for example). On the destination chain, the dApp contract must implement a
function zetaMessageReceive which takes the same parameters as the sendingzeta.MessageSend,
and can perform application logic (such as minting an NFT that has been locked on the source chain). The
destination contract will also receive a ZETA coin (less gas fee), which can be used as a value transfer
cross-chain.

Message passing can enable a variety of important applications such cross-chain DEX,
borrowing/lending, multi-chain NFT, etc.

5.5. Multi-chain NFT

Non-fungible Token (NFT) is an emerging concept that has found use in art collection, gaming, event
tickets, and many other applications. In contrast to fungible tokens such as ETH, BTC, or ERC-20 tokens,
each NFT is unique and not interchangeable with another NFT in the same collection. This
non-fungibility can be essential in applications such as art, real-estate, etc. On Ethereum, for example, the
most common NFT standards are ERC-721 and ERC-1155. In ERC-721, an NFT is basically a tuple
(contractAddress, tokenId). The smart contract that issues the NFTs keeps track of the owners of
each NFT in a map owner=>tokenId. The NFT can be transferred from one owner to another, and each
NFT owner can be queried.

In a multi-chain NFT world, where the same collection of NFTs are issued on multiple chains (such as
Ethereum, Flow, Solana), and one NFT can transfer to another chain, a challenge in the bridge model is
the knowing the provenance of a given NFT — who is the owner of a given NFT now that the NFT could
be on one of multiple chains and where are the records of the transactions of the transfers? This problem
can be solved by ZetaChain smart contracts which facilitate cross-chain ownership transfers of NFTs. It
can work as follows. Each chain will have an escrow smart contract controlled by the ZetaChain key. To
transfer an NFT to another chain, one transfers the NFT to the escrow, pays transaction fee in ZETA coin,
and ZetaChain will mint the NFT on the destination chain. The smart contract on ZetaChain keeps track
of the owner and blockchain where the NFT is at any given time. While there have been experimental
cross-chain NFT bridges, having a decentralized issuing authority allows an NFT to be natively
cross-chain, making it simpler and feasible to create, verify, and exchange NFTs cross-chain.
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Figure 10. Multi-chain NFT. With a decentralized issuing authority (ZetaChain TSS), one can have an
NFT that is easily sent between chains, where ownership and current location are easily verifiable.

5.6. Other Use Cases

These are just a few other potential use cases of ZetaChain. Given ZetaChain is a general smart contract
platform, you can also imagine that any application you deploy on a single blockchain/smart contract
platform can be expanded to operate across all connected chains.

5.6.1. Universal Payments

A system that lets users/EOAs send payments from/to any asset on any chain. This can help vendors and
customers have a decentralized, universal, and accessible payments route that doesn’t require users to
have a hyper-specific set of assets on a specific chain.

5.6.2. Universal Identity and Assets

Identity system, name service, or Soul Bound Tokens that can serve as identities across all chains. With
universal capabilities, identities can interact with other chains agnostically and in a future-proof manner
as ZetaChain adds support for more chains. Users need not have individual identities/domains per chain,
and can utilize their assets (gaming, collectibles, fungible tokens, etc.) from all chains from a single place.

5.6.3. Multi-chain, Multi-signature vaults



Securely custody and manage assets on multiple chains with a multi-sig that involves accounts and/or
messages from many chains.

5.6.4. Universal Account Abstraction or Smart Contract Wallets

Smart contract wallets that can manage transactions to/from all chains, allowing things like “gasless”
transactions, complex/multi-transactions, etc. that involve multiple chains. This could be imagined as an
EIP-4337 but with universal capabilities.

5.6.5. Universal DeFi

DEXs, lending/borrowing, perps, and so on can support seamless 1-step trades and transactions that unify
liquidity across chains. Leveraging universal smart contracts, one can significantly reduce common
complexity and concerns of slippage, race-conditions, MEV that are involved with transacting fungible
tokens that are often involved in today’s cross-chain applications. Financial applications spanning many
chains can be built with the same logic as if they were all on one chain.

5.6.6. Universal DAOs

Decentralized Autonomous Organizations and governance tooling that lets groups of people orchestrate
activity, governance, and asset management in a chain-agnostic manner.

6. Security

6.1. Decentralization

The ZetaChain system is designed to not have a single point of failure, primarily through decentralization.

ZetaChain is decentralized architecturally and infrastructurally. Decentralization is an effective way to be
fault tolerant, resist attacks and collusions. The ZetaChain nodes are run by individuals or organizations
without permission. No single point of failure in ZetaChain node (ZetaCore, ZetaClient) affects the
system.

On the other hand, to effect changes in external chains, ZetaChain must act as a single entity to sign
messages, therefore raising the issue of centralized signing key. ZetaChain utilizes GG20 leaderless
Threshold Signature Scheme (TSS) which does the key generation and key sign in a distributed,
decentralized way. No single ZetaChain node or other individual ever has access to the complete private
key at any point in time. Effectively, the ZetaChain node (the signer in ZetaClient, to be specific) has
equal “vote” in signing outbound transactions, like in an m/n multisig.

To strike a balance between decentralization and coordination, certain aspects of ZetaChain are not fully
decentralized, or designed to evolve into more decentralized gradually. For example, the software is
currently developed by a central entity, which means the system is susceptible to software bugs from a
single source. To defend against bugs ZetaChain employs multi-level blanket protection, to be discussed
in more detail below.



6.2. Securing Inbound and Outbound Transactions

The ZetaCore takes in events from the observers in the ZetaClients. The ZetaClients monitor events on
external chains via a variety of sources—node as service providers such as Infura, their (validator operator)
own instance of full node, or full node run by the developers and partners. The observed event (as an
inbound transaction to ZetaChain) must reach consensus on the ZetaCore to trigger state changes in the
ZetaCore.

The state change in ZetaCore causes the signers of ZetaClient to prepare, sign, and broadcast transactions
to external chains. ZetaChain's consensus mechanism ensures that the transaction is agreed upon; the TSS
key ensures that only super majority of ZetaClients can sign.

All the inbound/outbound transactions and decisions made (through state changes) are recorded in the
ZetaChain blocks which are available, immutable, verifiable, and completely transparent.

6.3. Comprehensive Defense Against Arbitrary Minting

Since the only native value that can move cross-chain through ZetaChain is the ZETA token, and
ZetaChain effectively only manages transferring ZETA token from chain A to chain B, it's possible to
offer comprehensive protection against the only way to steal value from ZetaChain: invalid minting that
inflates the total supply of ZETA across chains.

We offer comprehensive protection against minting without commensurate burning as follows:

ZetaChain nodes will check total supply across chains before initiating the minting of ZETA token. This
protects against software bugs or vulnerability in the ZetaChain node software. The token contracts on the
chains (except on Ethereum, where a locking contract will assume the role) checks total supply of ZETA
across chains before minting. The total supply of ZETA is provided by Chainlink and posted on each
connected chain. This protection ensures that no one can arbitrarily mint and that the total supply of
ZETA remains fixed across chains. It should be noted that the two comprehensive defenses, while
providing strong protection against software bugs and stealing from ZetaChain (including every holder of
the ZETA token), they do not eliminate exploits. For example, if the attacker gains control of 2/3
validators, or the attacker is able to exploit a bug in the software, he is able to redirect a legitimate mint
from another user to his wallet. However in these worst-case scenarios the impact is likely to be contained
as the attacker can only steal from active users at that specific time, and the system would be promptly
stopped once noticed by users.

In summary: the funds at risk in the worst-case scenario is only the ZETA amount that is being moved
cross-chain at the time of the exploit. Funds at rest are never at risk.

6.4. What Happens When External Chains are Attacked

If the external chains connected by ZetaChain are being attacked (such as 51% attack), which can result in
the following violations: 1) double spend leading to inflated supply of ZETA token; 2) censorship; 3)
reversion leading to loss of atomicity of cross-chain transaction, as the source part might be no longer
existing; 4) hard fork, chain split; and more. The design of ZetaChain can mitigate a few of these cases, or



contain the damage from unlimited spreading. For example, an external chain causing unlimited mint (by
repeatedly reverting and paying) cannot happen because of the total supply check of ZetaChain. By
extension, the dApps that use ZETA coin for all cross-chain value transfer are also protected from
unlimited inflation. For other external chains that are being exploited, the ZetaChain should go into an
emergency halt to assess the situation. The recovery will be coordinated by stakeholders and governance
mechanisms.

7. Conclusion

In this whitepaper we survey the landscape of cross-chain interoperability. While bridging is the main
solution today and the focus of many emerging projects, ZetaChain explores a more ambitious and
general approach: native cross-chain smart contracts that directly interact with nearly any external
blockchain. No wrapping around assets are needed to transfer values cross-chain and no bridges are
needed for every pair of blockchains. The ZetaChain smart contract can custody assets on an external
chain directly, and manages assets according to predetermined arbitrary logic. Every external chain
interaction is settled on external chains directly. As such, ZetaChain provides the most general platform
for decentralized cross-chain applications to build on with connections to almost any existing or future
blockchain and/or L2/rollup, with access to the whole supply of native assets on those chains.
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